NCERT Solutions for Class 9 Maths Chapter 9 Congruence Of Triangles And Inequalities In A Triangle are provided here with simple step-by-step explanations. These solutions for Congruence Of Triangles And Inequalities In A Triangle are extremely popular among class 9 students for Maths Congruence Of Triangles And Inequalities In A Triangle Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the NCERT Book of class 9 Maths Chapter 9 are provided here for you for free. You will also love the ad-free experience on Meritnation’s NCERT Solutions. All NCERT Solutions for class 9 Maths are prepared by experts and are 100% accurate.

Page No 282:

Question 1:

Answer:



Given: In the given figure, AB || CD and O is the midpoint of AD.

To prove:
(i) ΔAOB ≅ ΔDOC.
(ii) O is the midpoint of BC.

Proof:
(i) In ΔAOB and ΔDOC,
BAO = ∠CDO                    (Alternate interior angles, AB || CD)
AO = DO                              (Given, O is the midpoint of AD)
AOB = ∠DOC                   (Vertically opposite angles)

∴ By ASA congruence criteria,
ΔAOB ≅ ΔDOC

(ii) âˆµ ΔAOB ≅ ΔDOC           [From (i)]
BO = CO                           (CPCT)
Hence, O is the midpoint of BC.

Page No 282:

Question 2:



Given: In the given figure, AB || CD and O is the midpoint of AD.

To prove:
(i) ΔAOB ≅ ΔDOC.
(ii) O is the midpoint of BC.

Proof:
(i) In ΔAOB and ΔDOC,
BAO = ∠CDO                    (Alternate interior angles, AB || CD)
AO = DO                              (Given, O is the midpoint of AD)
AOB = ∠DOC                   (Vertically opposite angles)

∴ By ASA congruence criteria,
ΔAOB ≅ ΔDOC

(ii) âˆµ ΔAOB ≅ ΔDOC           [From (i)]
BO = CO                           (CPCT)
Hence, O is the midpoint of BC.

Answer:



Given: In the given figure, AD and BC are equal perpendiculars to a line segment AB.

To prove: CD bisects AB

Proof:
In ΔAOD and ΔBOC,
DAO = ∠CBO = 90°           (Given)
AD = BC                              (Given)
DOA = ∠COB                    (Vertically opposite angles)

∴ By AAS congruence criteria,
ΔAOD ≅ ΔBOC
∴ AO = BO                           (CPCT)
Hence, 
CD bisects AB.

Page No 282:

Question 3:



Given: In the given figure, AD and BC are equal perpendiculars to a line segment AB.

To prove: CD bisects AB

Proof:
In ΔAOD and ΔBOC,
DAO = ∠CBO = 90°           (Given)
AD = BC                              (Given)
DOA = ∠COB                    (Vertically opposite angles)

∴ By AAS congruence criteria,
ΔAOD ≅ ΔBOC
∴ AO = BO                           (CPCT)
Hence, 
CD bisects AB.

Answer:



Given: In the given figure, two parallel line l and m are intersected by two parallel lines p and q.

To prove: ΔABC ≅ ΔCDA

Proof:
In ΔABC and ΔCDA,

BACDCA           (Alternate interior angles, pq)
BCADAC           (Alternate interior angles, lm)
AC = CA                        (Common side)

 By ASA congruence criteria,
ΔABC ≅ ΔCDA



Page No 283:

Question 4:



Given: In the given figure, two parallel line l and m are intersected by two parallel lines p and q.

To prove: ΔABC ≅ ΔCDA

Proof:
In ΔABC and ΔCDA,

BACDCA           (Alternate interior angles, pq)
BCADAC           (Alternate interior angles, lm)
AC = CA                        (Common side)

 By ASA congruence criteria,
ΔABC ≅ ΔCDA

Answer:



Given: AD is an altitude of an isosceles ΔABC in which AB AC.

To prove: (i) AD bisects BC, (ii) AD bisects ∠A

Proof:
(i) In ΔABD and ΔACD,

ADB = ADC = 90°          (Given, ADBC)
AB = AC                                   (Given)
AD = AD                                  (Common side)

 By RHS congruence criteria,
ΔABD ≅ ΔACD

BD = CD       (CPCT)

Hence, AD bisects BC.

(ii)
 ΔABD ≅ ΔACD       [From (i)]
 BAD = CAD      (CPCT)
Hence, AD bisects ∠A.

Page No 283:

Question 5:



Given: AD is an altitude of an isosceles ΔABC in which AB AC.

To prove: (i) AD bisects BC, (ii) AD bisects ∠A

Proof:
(i) In ΔABD and ΔACD,

ADB = ADC = 90°          (Given, ADBC)
AB = AC                                   (Given)
AD = AD                                  (Common side)

 By RHS congruence criteria,
ΔABD ≅ ΔACD

BD = CD       (CPCT)

Hence, AD bisects BC.

(ii)
 ΔABD ≅ ΔACD       [From (i)]
 BAD = CAD      (CPCT)
Hence, AD bisects ∠A.

Answer:

In ABE and ACF, we have:BE =CF     (Given)BEA=CFA=90°A=A  (Common)ABEACF   (AAS criterion)
AB = AC (CPCT)

Page No 283:

Question 6:

In ABE and ACF, we have:BE =CF     (Given)BEA=CFA=90°A=A  (Common)ABEACF   (AAS criterion)
AB = AC (CPCT)

Answer:



Given: ΔABC and ΔDBC are two isosceles triangles on the same base BC.

To prove:
(i) ΔABD ≅ ΔACD
(ii) ΔABE ≅ ΔACE
(iii) AE bisects ∠A as well as ∠D
(iv) AE is the perpendicular bisector of BC

Proof:
(i) In ΔABD and ΔACD,

BD CD                                  (Given, ΔDBC is an isosceles triangles)
AB = AC                                   (Given, ΔABC is an isosceles triangles)
AD = AD                                  (Common side)

 By SSS congruence criteria,
ΔABD ≅ ΔACD

Also, BAD = CAD         (CPCT)
or, BAE = CAE     .....(1)

(ii)
In ΔABE and ΔACE,

AB = AC                                   (Given, ΔABC is an isosceles triangles)
BAE = CAE                       [From (i)]
AE = AE                                  (Common side)

 By SAS congruence criteria,
ΔABE ≅ ΔACE

Also, BE = CE                    (CPCT)    .....(2)
And, AEB = AEC         (CPCT)   .....(3)

(iii)
In ΔBED and ΔCED,

BD CD                                  (Given, ΔDBC is an isosceles triangles)
BECE                                   [From (2)]
DE = DE                                  (Common side)

 By SSS congruence criteria,
ΔBED ≅ ΔCED

Also, BDE = CDE         (CPCT)   .....(4)

(iv)
 BAE = CAE        [From (1)]
And, BDE = CDE   [From (4)]
 AE bisects ∠A as well as ∠D.

(v)
AEB+AEC=180°      Linear pairAEB+AEB=180°      From 32AEB=180°AEB=180°2AEB=90°          .....5

From (2) and (5), we get
AE is the perpendicular bisector of BC.

Page No 283:

Question 7:



Given: ΔABC and ΔDBC are two isosceles triangles on the same base BC.

To prove:
(i) ΔABD ≅ ΔACD
(ii) ΔABE ≅ ΔACE
(iii) AE bisects ∠A as well as ∠D
(iv) AE is the perpendicular bisector of BC

Proof:
(i) In ΔABD and ΔACD,

BD CD                                  (Given, ΔDBC is an isosceles triangles)
AB = AC                                   (Given, ΔABC is an isosceles triangles)
AD = AD                                  (Common side)

 By SSS congruence criteria,
ΔABD ≅ ΔACD

Also, BAD = CAD         (CPCT)
or, BAE = CAE     .....(1)

(ii)
In ΔABE and ΔACE,

AB = AC                                   (Given, ΔABC is an isosceles triangles)
BAE = CAE                       [From (i)]
AE = AE                                  (Common side)

 By SAS congruence criteria,
ΔABE ≅ ΔACE

Also, BE = CE                    (CPCT)    .....(2)
And, AEB = AEC         (CPCT)   .....(3)

(iii)
In ΔBED and ΔCED,

BD CD                                  (Given, ΔDBC is an isosceles triangles)
BECE                                   [From (2)]
DE = DE                                  (Common side)

 By SSS congruence criteria,
ΔBED ≅ ΔCED

Also, BDE = CDE         (CPCT)   .....(4)

(iv)
 BAE = CAE        [From (1)]
And, BDE = CDE   [From (4)]
 AE bisects ∠A as well as ∠D.

(v)
AEB+AEC=180°      Linear pairAEB+AEB=180°      From 32AEB=180°AEB=180°2AEB=90°          .....5

From (2) and (5), we get
AE is the perpendicular bisector of BC.

Answer:

Consider the triangles AEB and CDB.

EBA=DBC  (Common angle)  ...(i)

Further, we have:

BEA=180-yBDC=180-xSince x = y, we have:180-x =180-y BEA=BDC    ...(ii)

AB = CB     (Given) ...(iii)
From (i), (ii) and (iii), we have:
BDCBEA   (AAS criterion)
∴ AE = CD (CPCT)
Hence, proved.

Page No 283:

Question 8:

Consider the triangles AEB and CDB.

EBA=DBC  (Common angle)  ...(i)

Further, we have:

BEA=180-yBDC=180-xSince x = y, we have:180-x =180-y BEA=BDC    ...(ii)

AB = CB     (Given) ...(iii)
From (i), (ii) and (iii), we have:
BDCBEA   (AAS criterion)
∴ AE = CD (CPCT)
Hence, proved.

Answer:



Given: In the given figure, ∠BAQ = ∠BAPBPAP and BQAQ.

To prove:
(i) ΔAPB ≅ ΔAQB
(ii) BP BQ, i.e., B is equidistant from the arms of ∠A.

Proof:
(i) In ΔAPB and ΔAQB,

BAQ = ∠BAP,                   (Given)
APB = ∠AQB = 90°          (Given, BPAP and BQAQ)
AB = AB                               (Common side)

 By AAS congruence criteria,
ΔAPB ≅ ΔAQB

(ii)
 ΔAPB ≅ ΔAQB            [From (i)]
BP = BQ                       (CPCT)
Hence, is equidistant from the arms of ∠A.

Page No 283:

Question 9:



Given: In the given figure, ∠BAQ = ∠BAPBPAP and BQAQ.

To prove:
(i) ΔAPB ≅ ΔAQB
(ii) BP BQ, i.e., B is equidistant from the arms of ∠A.

Proof:
(i) In ΔAPB and ΔAQB,

BAQ = ∠BAP,                   (Given)
APB = ∠AQB = 90°          (Given, BPAP and BQAQ)
AB = AB                               (Common side)

 By AAS congruence criteria,
ΔAPB ≅ ΔAQB

(ii)
 ΔAPB ≅ ΔAQB            [From (i)]
BP = BQ                       (CPCT)
Hence, is equidistant from the arms of ∠A.

Answer:



Given: In quadrilateral ABCDAC bisects the angles ∠A and ∠C.

To prove: AB AD and CB CD

Proof:
In ABC and ADC,

BACDAC            (Given, AC bisects the angles ∠A)
AC = AC                        (Common side)
BCADCA            (Given, AC bisects the angles ∠C)

 By ASA congruence criteria,
ABC ADC

Hence, AB AD and CB CD.     (CPCT)

Page No 283:

Question 10:



Given: In quadrilateral ABCDAC bisects the angles ∠A and ∠C.

To prove: AB AD and CB CD

Proof:
In ABC and ADC,

BACDAC            (Given, AC bisects the angles ∠A)
AC = AC                        (Common side)
BCADCA            (Given, AC bisects the angles ∠C)

 By ASA congruence criteria,
ABC ADC

Hence, AB AD and CB CD.     (CPCT)

Answer:


Given: In right triangle ΔABC, ∠BAC = 90°AB AC and ∠ACD = ∠BCD

To prove: AC AD BC

Proof:
Let AB = AC = x and AD = y.

In ABC,

BC2=AB2+AC2BC2=x2+x2BC2=2x2BC=2x2BC=x2

Now,

BDAD=BCAC                  (An angle bisector of an angle of a triangle divides the opposite side in two segments that are proportional to the other two sides of the triangle.)
x-yy=x2xxy-yy=2xy-1=2xy=2+1y=x2+1
y=x2+1×2-12-1y=x2-122-12y=x2-x2-1y=x2-xx+y=x2

Hence, AC + AD = BC.



Page No 284:

Question 11:


Given: In right triangle ΔABC, ∠BAC = 90°AB AC and ∠ACD = ∠BCD

To prove: AC AD BC

Proof:
Let AB = AC = x and AD = y.

In ABC,

BC2=AB2+AC2BC2=x2+x2BC2=2x2BC=2x2BC=x2

Now,

BDAD=BCAC                  (An angle bisector of an angle of a triangle divides the opposite side in two segments that are proportional to the other two sides of the triangle.)
x-yy=x2xxy-yy=2xy-1=2xy=2+1y=x2+1
y=x2+1×2-12-1y=x2-122-12y=x2-x2-1y=x2-xx+y=x2

Hence, AC + AD = BC.

Answer:

Proof:
In OQA and OPB, we have:OQ=OP        (Given)OA=OB        (Given)AOQ=BOP        (Common)OQAOPB       (SAS criterion)
OAQ=OBP        (Corresponding angles of congruent triangles)
Now, consider triangles BQX and APX.
Given:OA=OBOP=OQ OA-OP=OB-OQAP=BQ
Further, BXQ=AXP     (Vertically opposite angles)
Also, we have proven that QBX=PAX.
BQXAPX   (AAS criterion)

 PX=QX     (corresponding sides of congruent triangles)
Also, AX=BX    (corresponding sides of congruent triangles)    
Hence, proved.

Page No 284:

Question 12:

Proof:
In OQA and OPB, we have:OQ=OP        (Given)OA=OB        (Given)AOQ=BOP        (Common)OQAOPB       (SAS criterion)
OAQ=OBP        (Corresponding angles of congruent triangles)
Now, consider triangles BQX and APX.
Given:OA=OBOP=OQ OA-OP=OB-OQAP=BQ
Further, BXQ=AXP     (Vertically opposite angles)
Also, we have proven that QBX=PAX.
BQXAPX   (AAS criterion)

 PX=QX     (corresponding sides of congruent triangles)
Also, AX=BX    (corresponding sides of congruent triangles)    
Hence, proved.

Answer:

Since ABC is an equilateral , thenABC = BCA = CAB = 60°Since PQCA and PC is a transversal, thenBPQ=BCA=60°   Corresponding anglesSince PQCA and QA is a transversal, thenBQP=BAC=60°  Corresponding anglesFurther, B=60°In BPQ,B = BPQ = BQP = 60°BPQis an equilateral triangle.i.e., BP=PQ=BQNow,  BP=CRPQ=CR     ....1Considering MPQ and MCR, we get:PQM=MRC     Alternate interior anglesPMQ=CMR     Vertically opposite angles   PQ=CR        using 1MPQMCR AAS criterionMP=MC    Corresponding parts of congruent triangles are equalQR bisects PC.

Page No 284:

Question 13:

Since ABC is an equilateral , thenABC = BCA = CAB = 60°Since PQCA and PC is a transversal, thenBPQ=BCA=60°   Corresponding anglesSince PQCA and QA is a transversal, thenBQP=BAC=60°  Corresponding anglesFurther, B=60°In BPQ,B = BPQ = BQP = 60°BPQis an equilateral triangle.i.e., BP=PQ=BQNow,  BP=CRPQ=CR     ....1Considering MPQ and MCR, we get:PQM=MRC     Alternate interior anglesPMQ=CMR     Vertically opposite angles   PQ=CR        using 1MPQMCR AAS criterionMP=MC    Corresponding parts of congruent triangles are equalQR bisects PC.

Answer:

In ABP and QCP, we have:BPA=CPQ   (Vertically opposite angle)PAB=PQC    (Alternate angles)PB = PC     (P is the midpoint)ABPQCP   (AAS criterion)

∴ AB = CQ            (CPCT)

DQ=DC+CQ DQ=DC+AB    (Proved, AB = CQ)
Hence, proved.

Page No 284:

Question 14:

In ABP and QCP, we have:BPA=CPQ   (Vertically opposite angle)PAB=PQC    (Alternate angles)PB = PC     (P is the midpoint)ABPQCP   (AAS criterion)

∴ AB = CQ            (CPCT)

DQ=DC+CQ DQ=DC+AB    (Proved, AB = CQ)
Hence, proved.

Answer:

In PAD and PAB, we have:AD=AB   (Side of a square)AP=AP    (Common)PD =PB    (Given)PADPAB   (SSS criterion)APD=APB

In CPD and CPB, we have:CD = CB (Sides of square)CP=CP   (Common)PD=PB   (Given)CPDCPB   (SSS test)CPD=CPB

APD+CPD=APB+CPBButAPD+CPD+APB+CPB=360°APD+CPD=180°

So, CPA is a straight line.
Hence, proved.

Page No 284:

Question 15:

In PAD and PAB, we have:AD=AB   (Side of a square)AP=AP    (Common)PD =PB    (Given)PADPAB   (SSS criterion)APD=APB

In CPD and CPB, we have:CD = CB (Sides of square)CP=CP   (Common)PD=PB   (Given)CPDCPB   (SSS test)CPD=CPB

APD+CPD=APB+CPBButAPD+CPD+APB+CPB=360°APD+CPD=180°

So, CPA is a straight line.
Hence, proved.

Answer:



Given: In square ABCD, ΔOAB is an equilateral triangle.

To prove: ΔOCD is an isosceles triangle.

Proof:

DAB=CBA=90°        Angles of square ABCDAnd, OAB=OBA=60°       Angles of equilateral OABDAB-OAB=CBA-OBA=90°-60°OAD=OBC=30°         .....i

Now, in ΔDAO and ΔCBO,

AD = BC                   (Sides of square ABCD)
DAOCBO      [From (i)]
AO = BO                  (Sides of equilateral ΔOAB)

 By SAS congruence criteria,
ΔDAO  ΔCBO

So, OD = OC         (CPCT)
Hence, ΔOCD is an isosceles triangle.

Page No 284:

Question 16:



Given: In square ABCD, ΔOAB is an equilateral triangle.

To prove: ΔOCD is an isosceles triangle.

Proof:

DAB=CBA=90°        Angles of square ABCDAnd, OAB=OBA=60°       Angles of equilateral OABDAB-OAB=CBA-OBA=90°-60°OAD=OBC=30°         .....i

Now, in ΔDAO and ΔCBO,

AD = BC                   (Sides of square ABCD)
DAOCBO      [From (i)]
AO = BO                  (Sides of equilateral ΔOAB)

 By SAS congruence criteria,
ΔDAO  ΔCBO

So, OD = OC         (CPCT)
Hence, ΔOCD is an isosceles triangle.

Answer:

In AXC and AYB, we have:AC=AB  (Given)AX=AY  (Given)BAC=CAB   (Angle common to AXC and AYB)AXCAYB    (SAS criterion)So, CX=BY   (CPCT)
Hence, proved.



Page No 285:

Question 17:

In AXC and AYB, we have:AC=AB  (Given)AX=AY  (Given)BAC=CAB   (Angle common to AXC and AYB)AXCAYB    (SAS criterion)So, CX=BY   (CPCT)
Hence, proved.

Answer:

In BDL and CDM, we have:BD=CD    (D is midpoint)DL=DM    (Given)BLD=CMD    (90° each)Thus,BDLCDM  (RHS criterion)
BL=MC (CPCT)
B=C
This makes triangle ABC an isosceles triangle.
Or AB = AC
Hence, proved.

Page No 285:

Question 18:

In BDL and CDM, we have:BD=CD    (D is midpoint)DL=DM    (Given)BLD=CMD    (90° each)Thus,BDLCDM  (RHS criterion)
BL=MC (CPCT)
B=C
This makes triangle ABC an isosceles triangle.
Or AB = AC
Hence, proved.

Answer:

In triangle ABC, we have:
AB = AC   (Given)
B=C12B=12COBC=OCBBO=CO

Now, in AOB and AOC, we have:OB=OC   (Proved)AB=AC    (Given)AO=AO    (Common)AOBAOC   (SSS criterion)
i.e., BAO=CAO (Corresponding angles of congruent triangles)

So, it shows that ray AO is the bisector of A.
Hence, proved.

Page No 285:

Question 19:

In triangle ABC, we have:
AB = AC   (Given)
B=C12B=12COBC=OCBBO=CO

Now, in AOB and AOC, we have:OB=OC   (Proved)AB=AC    (Given)AO=AO    (Common)AOBAOC   (SSS criterion)
i.e., BAO=CAO (Corresponding angles of congruent triangles)

So, it shows that ray AO is the bisector of A.
Hence, proved.

Answer:


Given: In trapezium ABCDand are mid-points of AB and DC, MNAB and MNDC.

To prove: AD = BC

Construction: Join CM and DM.

Proof:

In ΔCMN and ΔDMN,

MN = MN                           (Common sides)
CNM = DNM = 90°     (Given, MNDC)
CN = DN                             (Given, N is the mid-point DC)

 By SAS congruence criteria,
ΔCMN  ΔDMN

So, CM = DM                  (CPCT)    .....(i)
And, CMNDMN    (CPCT)
But, AMNBMN = 90°      (Given, MNAB)
AMN - CMNBMN - DMN
AMD = BMC           .....(ii)

Now, in ΔAMD and ΔBMC,

DM = CM                            [From (i)]
AMD = BMC                [From (ii)]
AM = BM                            (Given, M is the mid-point AB)

 By SAS congruence criteria,
ΔAMD  ΔBMC

Hence, AD = BC    (CPCT)

Page No 285:

Question 20:


Given: In trapezium ABCDand are mid-points of AB and DC, MNAB and MNDC.

To prove: AD = BC

Construction: Join CM and DM.

Proof:

In ΔCMN and ΔDMN,

MN = MN                           (Common sides)
CNM = DNM = 90°     (Given, MNDC)
CN = DN                             (Given, N is the mid-point DC)

 By SAS congruence criteria,
ΔCMN  ΔDMN

So, CM = DM                  (CPCT)    .....(i)
And, CMNDMN    (CPCT)
But, AMNBMN = 90°      (Given, MNAB)
AMN - CMNBMN - DMN
AMD = BMC           .....(ii)

Now, in ΔAMD and ΔBMC,

DM = CM                            [From (i)]
AMD = BMC                [From (ii)]
AM = BM                            (Given, M is the mid-point AB)

 By SAS congruence criteria,
ΔAMD  ΔBMC

Hence, AD = BC    (CPCT)

Answer:



Given: In isosceles ABC, AB = AC; OB and OC are bisectors of B and C, respectively.

To prove: MOC = ABC

Proof:

In ∆ABC,

AB = AC             (Given)
ABC = ∠ACB   (Angles opposite to equal sides are equal)
12ABC = 12ACB
OBC = ∠OCB         (Given, OB and OC are the bisectors of ∠B and ∠C, respectively)    .....(i)

Now, in ∆OBC, ∠MOC is an exterior angle
MOC = ∠OBC + ∠OCB    (An exterior angle is equal to the sum of two opposite interior angles)
MOC = ∠OBC + ∠OBC    [From (i)]
MOC = 2∠OBC
Hence, ∠MOC = ∠ABC    (Given, OB is the bisector of ∠B)

Page No 285:

Question 21:



Given: In isosceles ABC, AB = AC; OB and OC are bisectors of B and C, respectively.

To prove: MOC = ABC

Proof:

In ∆ABC,

AB = AC             (Given)
ABC = ∠ACB   (Angles opposite to equal sides are equal)
12ABC = 12ACB
OBC = ∠OCB         (Given, OB and OC are the bisectors of ∠B and ∠C, respectively)    .....(i)

Now, in ∆OBC, ∠MOC is an exterior angle
MOC = ∠OBC + ∠OCB    (An exterior angle is equal to the sum of two opposite interior angles)
MOC = ∠OBC + ∠OBC    [From (i)]
MOC = 2∠OBC
Hence, ∠MOC = ∠ABC    (Given, OB is the bisector of ∠B)

Answer:



Given: In an isosceles ΔABC, AB = AC, BO and CO are the bisectors of 
ABC and ∠ACB, respectively.

To prove: ∠ABD = ∠BOC


Construction: Produce CB to point D.

Proof:

In ΔABC,

 AB = AC                    (Given)
 ACB = ABC            (Angle opposite to equal sides are equal)

12ACB=12ABCOCB=OBC           .....iGiven, BO and CO are angle bisector of ABC and ACB, respectively

In ΔBOC,

OBC+OCB+BOC=180°        By angle sum property of triangleOBC+OBC+BOC=180°    From i2OBC+BOC=180°ABC+BOC=180°           BO is the angle bisector of ABC      .....ii

Also, DBC is a straight line.
So, ABC+DBA=180°               Linear pair        .....iii

From (ii) and (iii), we get
ABC+BOC=ABC+DBA BOC=DBA

Page No 285:

Question 22:



Given: In an isosceles ΔABC, AB = AC, BO and CO are the bisectors of 
ABC and ∠ACB, respectively.

To prove: ∠ABD = ∠BOC


Construction: Produce CB to point D.

Proof:

In ΔABC,

 AB = AC                    (Given)
 ACB = ABC            (Angle opposite to equal sides are equal)

12ACB=12ABCOCB=OBC           .....iGiven, BO and CO are angle bisector of ABC and ACB, respectively

In ΔBOC,

OBC+OCB+BOC=180°        By angle sum property of triangleOBC+OBC+BOC=180°    From i2OBC+BOC=180°ABC+BOC=180°           BO is the angle bisector of ABC      .....ii

Also, DBC is a straight line.
So, ABC+DBA=180°               Linear pair        .....iii

From (ii) and (iii), we get
ABC+BOC=ABC+DBA BOC=DBA

Answer:



Given: BP is the bisector of ∠ABC, and BAQP

To prove: ΔBPQ is an isosceles triangle

Proof:

1=2           Given, BP is the bisector of ABCAnd, 1=3      Alternate interior angles2=3So, PQ=BQ         In a triangle, sides opposite to equal sides are equal.

But these are sides of BPQ.

Hence, BPQ is an isosceles triangle.

Page No 285:

Question 23:



Given: BP is the bisector of ∠ABC, and BAQP

To prove: ΔBPQ is an isosceles triangle

Proof:

1=2           Given, BP is the bisector of ABCAnd, 1=3      Alternate interior angles2=3So, PQ=BQ         In a triangle, sides opposite to equal sides are equal.

But these are sides of BPQ.

Hence, BPQ is an isosceles triangle.

Answer:


Given: An object is placed at a point A, the image of the object is seen at the point B, an observer is at point D, and LM is a plane mirror.

To Prove: The image is as far behind the mirror as the object is in front of the mirror, i.e. BT = AT.

Proof:

LM is a plane mirror

 i = r              (Angle of incidence is always equal to angle of reflection)    .....(1)

Also, ABCN                            (Both AB and CN are perpendicular to LM)

TAC=ACN=i                (Alternate interior angles)      .....(2)

And, CBT=NCD=r            (Corresponding angles)         .....(3)

From (1), (2) and (3), we get

TAC = CBT        .....(4)

Now,

In TAC and CBT,TAC=CBT               From 4ATC=BTC=90°CT=CT                       Common side By AAS congruence criteria,TACCBT

Hence, AT = BT    (CPCT)

Page No 285:

Question 24:


Given: An object is placed at a point A, the image of the object is seen at the point B, an observer is at point D, and LM is a plane mirror.

To Prove: The image is as far behind the mirror as the object is in front of the mirror, i.e. BT = AT.

Proof:

LM is a plane mirror

 i = r              (Angle of incidence is always equal to angle of reflection)    .....(1)

Also, ABCN                            (Both AB and CN are perpendicular to LM)

TAC=ACN=i                (Alternate interior angles)      .....(2)

And, CBT=NCD=r            (Corresponding angles)         .....(3)

From (1), (2) and (3), we get

TAC = CBT        .....(4)

Now,

In TAC and CBT,TAC=CBT               From 4ATC=BTC=90°CT=CT                       Common side By AAS congruence criteria,TACCBT

Hence, AT = BT    (CPCT)

Answer:

Let AB be the breadth of the river.
M is any point situated on the bank of the river.
Let O be the mid point of BM.
​Moving along perpendicular to point such that A,O and N are in a straight line.
Then MN is the required breadth of the river.

In OBA and OMN, we have:OB=OM     (O is midpoint)OBA=OMN    (Each 90°)AOB=NOM    (Vertically opposite angle)OBAOMN    (ASA criterion)

Thus, MN = AB (CPCT)
If MN is known, one can measure the width of the river without actually crossing it.

Page No 285:

Question 25:

Let AB be the breadth of the river.
M is any point situated on the bank of the river.
Let O be the mid point of BM.
​Moving along perpendicular to point such that A,O and N are in a straight line.
Then MN is the required breadth of the river.

In OBA and OMN, we have:OB=OM     (O is midpoint)OBA=OMN    (Each 90°)AOB=NOM    (Vertically opposite angle)OBAOMN    (ASA criterion)

Thus, MN = AB (CPCT)
If MN is known, one can measure the width of the river without actually crossing it.

Answer:



Given: In ABCD is the midpoint of side AC such that BD 12AC.

To prove: ∠ABC is a right angle.

Proof:

In ADB,AD=BD              Given, BD = 12ACDAB=DBA=x Let            Angles opposite to equal sides are equal

Similarly, in DCB,BD=CD               GivenDBC=DCB=y  Let

In ABC,

ABC+BCA+CAB=180°   Angle sum propertyx+x+y+y=180°2(x+y)=180°x+y=90°ABC=90°

Hence, ∠ABC is a right angle.



Page No 286:

Question 26:



Given: In ABCD is the midpoint of side AC such that BD 12AC.

To prove: ∠ABC is a right angle.

Proof:

In ADB,AD=BD              Given, BD = 12ACDAB=DBA=x Let            Angles opposite to equal sides are equal

Similarly, in DCB,BD=CD               GivenDBC=DCB=y  Let

In ABC,

ABC+BCA+CAB=180°   Angle sum propertyx+x+y+y=180°2(x+y)=180°x+y=90°ABC=90°

Hence, ∠ABC is a right angle.

Answer:

No, the statement is not true because the two triangles are congruent only by SAS congruence condition but the statement contains ASS or SSA condition as well which are not any condition for congruence of triangles.

Page No 286:

Question 27:

No, the statement is not true because the two triangles are congruent only by SAS congruence condition but the statement contains ASS or SSA condition as well which are not any condition for congruence of triangles.

Answer:

Yes, the statement is true because the two triangles can be congruent by either AAS or ASA congruence criteria.

Disclaimer: If corresponding angles of two triangles are equal, then the by angle sum property, the third corresponding angle will be equal. So, if we have two corresponding angles and a corresponding side are equal, then the triangles can be proved congruent by SAS congruence criteria. Therefore, ASA and SAS criteria are treated as same.



Page No 296:

Question 1:

Yes, the statement is true because the two triangles can be congruent by either AAS or ASA congruence criteria.

Disclaimer: If corresponding angles of two triangles are equal, then the by angle sum property, the third corresponding angle will be equal. So, if we have two corresponding angles and a corresponding side are equal, then the triangles can be proved congruent by SAS congruence criteria. Therefore, ASA and SAS criteria are treated as same.

Answer:

(i) No, because the sum of two sides of a triangle is not greater than the third side.
5 + 4 = 9

(ii) Yes, because the sum of two sides of a triangle is greater than the third side.
7 + 4 > 8; 8 + 7 > 4; 8 + 4 > 7

(iii) Yes, because the sum of two sides of a triangle is greater than the third side.
5 + 6 > 10; 10 + 6 > 5; 5 + 10 > 6

(iv) Yes, because the sum of two sides of a triangle is greater than the third side.
2.5 + 5 > 7; 5 + 7 > 2.5; 2.5 + 7 > 5

(v) No, because the sum of two sides of a triangle is not greater than the third side.
3 + 4 < 8

Page No 296:

Question 2:

(i) No, because the sum of two sides of a triangle is not greater than the third side.
5 + 4 = 9

(ii) Yes, because the sum of two sides of a triangle is greater than the third side.
7 + 4 > 8; 8 + 7 > 4; 8 + 4 > 7

(iii) Yes, because the sum of two sides of a triangle is greater than the third side.
5 + 6 > 10; 10 + 6 > 5; 5 + 10 > 6

(iv) Yes, because the sum of two sides of a triangle is greater than the third side.
2.5 + 5 > 7; 5 + 7 > 2.5; 2.5 + 7 > 5

(v) No, because the sum of two sides of a triangle is not greater than the third side.
3 + 4 < 8

Answer:

Given: In ΔABC, ∠A = 50° and ∠B = 60°

In ΔABC,
A + ∠B + ∠C = 180°           (Angle sum property of a triangle)
50° + 60° + ∠C = 180°
110° + ∠C = 180°
C = 180° - 110°
C = 70°

Hence, the longest side will be opposite to the largest angle (∠C = 70°)  i.e. AB.
And, the shortest side will be opposite to the smallest angle (∠A = 50° ) i.e. BC.

Page No 296:

Question 3:

Given: In ΔABC, ∠A = 50° and ∠B = 60°

In ΔABC,
A + ∠B + ∠C = 180°           (Angle sum property of a triangle)
50° + 60° + ∠C = 180°
110° + ∠C = 180°
C = 180° - 110°
C = 70°

Hence, the longest side will be opposite to the largest angle (∠C = 70°)  i.e. AB.
And, the shortest side will be opposite to the smallest angle (∠A = 50° ) i.e. BC.

Answer:

(i) Given: In âˆ†ABCA = 90°

So, sum of the other two angles in triangle ∠B + ∠C = 90°

i.e. ∠B, ∠C < 90°

Since, ∠A is the greatest angle.

So, the longest side is BC.

(ii) Given: ∠A = ∠B = 45°

Using angle sum property of triangle,

C = 90°

Since, ∠C is the greatest angle.

So, the longest side is AB.

(iii) Given: ∠A = 100° and ∠C = 50°

Using angle sum property of triangle,

B = 30°

Since, ∠A is the greatest angle.

So, the shortest side is BC.



Page No 297:

Question 4:

(i) Given: In âˆ†ABCA = 90°

So, sum of the other two angles in triangle ∠B + ∠C = 90°

i.e. ∠B, ∠C < 90°

Since, ∠A is the greatest angle.

So, the longest side is BC.

(ii) Given: ∠A = ∠B = 45°

Using angle sum property of triangle,

C = 90°

Since, ∠C is the greatest angle.

So, the longest side is AB.

(iii) Given: ∠A = 100° and ∠C = 50°

Using angle sum property of triangle,

B = 30°

Since, ∠A is the greatest angle.

So, the shortest side is BC.

Answer:

In triangle CBA, CBD is an exterior angle.

i.e., CBA+CBD=180°60°+CBD=180°CBD=120°

Triangle BCD is isosceles and BC = BD.
Let BCD=BDC = x°.
In CBD, we have:BCD+CBD+CDB=180°x+120°+x=1802x=60°x=30°BCD=BDC=30°

In triangle ADC, C=ACB + BCD = 50°+30°=80°
A=70°and D=30°

C>AAD>CD    ...(1)

Also, C>DAD>AC   ...(2)

Page No 297:

Question 5:

In triangle CBA, CBD is an exterior angle.

i.e., CBA+CBD=180°60°+CBD=180°CBD=120°

Triangle BCD is isosceles and BC = BD.
Let BCD=BDC = x°.
In CBD, we have:BCD+CBD+CDB=180°x+120°+x=1802x=60°x=30°BCD=BDC=30°

In triangle ADC, C=ACB + BCD = 50°+30°=80°
A=70°and D=30°

C>AAD>CD    ...(1)

Also, C>DAD>AC   ...(2)

Answer:


Given: ∠B < ∠and ∠C < ∠D

To prove: AD > BC

Proof: 

In AOB,B<AAO<BO       Side opposite to the greater angle is longer  .....1

In COD,C<DOD<OC       Side opposite to the greater angle is longer  .....2

Adding (1) and (2), we getAO+OD<BO+OCAD<BC

Page No 297:

Question 6:


Given: ∠B < ∠and ∠C < ∠D

To prove: AD > BC

Proof: 

In AOB,B<AAO<BO       Side opposite to the greater angle is longer  .....1

In COD,C<DOD<OC       Side opposite to the greater angle is longer  .....2

Adding (1) and (2), we getAO+OD<BO+OCAD<BC

Answer:

Given: In quadrilateral ABCD, AB and CD are respectively the smallest and largest sides.

To prove:
​(i) ∠A > ∠C
(ii) ∠> ∠D


Construction: Join AC.

Proof:

In ABC, BC>AB           Given, AB is the smallest side 1>2            ...1

In ADC, CD>AD           Given, CD is the largest side 3>4            ...2

Adding 1 and 2, we get1+3>2+4 A>C


(ii)

Construction: Join BD.

Proof:

In ABD, AD>AB                  Given, AB is the smallest side. 5>6                 ...3

In CBD, CD>BC                  Given, CD is the greatest side. 7>8                 ...4

Adding 3 and 4, we get5+7>6+8B>D

Page No 297:

Question 7:

Given: In quadrilateral ABCD, AB and CD are respectively the smallest and largest sides.

To prove:
​(i) ∠A > ∠C
(ii) ∠> ∠D


Construction: Join AC.

Proof:

In ABC, BC>AB           Given, AB is the smallest side 1>2            ...1

In ADC, CD>AD           Given, CD is the largest side 3>4            ...2

Adding 1 and 2, we get1+3>2+4 A>C


(ii)

Construction: Join BD.

Proof:

In ABD, AD>AB                  Given, AB is the smallest side. 5>6                 ...3

In CBD, CD>BC                  Given, CD is the greatest side. 7>8                 ...4

Adding 3 and 4, we get5+7>6+8B>D

Answer:

Given: Quadrilateral ABCD

To prove: (AB + BC + CD + DA) > (AC + BD)

Proof:

In ABC,AB+BC>AC         ...iIn CAD,CD+AD>AC        ...iiIn BAD,AB+AD>BD        ...iiiIn BCD,BC+CD>BD        ...iv

Adding (i), (ii), (iii) and (iv), we get

2(AB + BC + CD + DA) < 2( AC + BD)

Hence, (AB + BC + CD + DA) < (AC + BD).

Page No 297:

Question 8:

Given: Quadrilateral ABCD

To prove: (AB + BC + CD + DA) > (AC + BD)

Proof:

In ABC,AB+BC>AC         ...iIn CAD,CD+AD>AC        ...iiIn BAD,AB+AD>BD        ...iiiIn BCD,BC+CD>BD        ...iv

Adding (i), (ii), (iii) and (iv), we get

2(AB + BC + CD + DA) < 2( AC + BD)

Hence, (AB + BC + CD + DA) < (AC + BD).

Answer:

Given: Quadrilateral ABCD
To prove: (AB + BC + CD + DA) < 2(BD + AC).
Proof:

In âˆ†AOB, 
OA+OB>AB      .....i
In âˆ†BOC, 
OB+OC>BC      .....ii
In âˆ†COD, 
OC+OD>CD     .....iii
In âˆ†AOD, 
OD+OA>AD     .....iv
Adding i,ii,iii and iv, we get
     2OA+OB+OC+OD>AB+BC+CD+DA 2OB+OD+OA+OC>AB+BC+CD+DA2BD+AC>AB+BC+CD+DA

Page No 297:

Question 9:

Given: Quadrilateral ABCD
To prove: (AB + BC + CD + DA) < 2(BD + AC).
Proof:

In âˆ†AOB, 
OA+OB>AB      .....i
In âˆ†BOC, 
OB+OC>BC      .....ii
In âˆ†COD, 
OC+OD>CD     .....iii
In âˆ†AOD, 
OD+OA>AD     .....iv
Adding i,ii,iii and iv, we get
     2OA+OB+OC+OD>AB+BC+CD+DA 2OB+OD+OA+OC>AB+BC+CD+DA2BD+AC>AB+BC+CD+DA

Answer:



Given: In ΔABC, ∠B = 35°, ∠C = 65° and the bisector of ∠BAC meets BC in X.

In ABX, BAX>ABX BX>AX                 ...i

Similarly, in ACX, ACX>XAC AX>CX                 ...ii

From i and ii, we getBX>AX>CX

Page No 297:

Question 10:



Given: In ΔABC, ∠B = 35°, ∠C = 65° and the bisector of ∠BAC meets BC in X.

In ABX, BAX>ABX BX>AX                 ...i

Similarly, in ACX, ACX>XAC AX>CX                 ...ii

From i and ii, we getBX>AX>CX

Answer:

Since the angle opposite to the longer side is greater, we have:

PQ>PRR>Q12R>12QSRQ>RQSQS>SR

SQ>SR

Page No 297:

Question 11:

Since the angle opposite to the longer side is greater, we have:

PQ>PRR>Q12R>12QSRQ>RQSQS>SR

SQ>SR

Answer:


Given: In ABC, AB = AC

To prove: CD BD

Proof:

In ABC,

Since, AB = AC       (Given)

So, ABC=ACB      ...(i)

In ABC and DBC, ABC>DBC ACB> DBC         From i BD>CD               Side opposite to greater angle is longer. CD<BD

Page No 297:

Question 12:


Given: In ABC, AB = AC

To prove: CD BD

Proof:

In ABC,

Since, AB = AC       (Given)

So, ABC=ACB      ...(i)

In ABC and DBC, ABC>DBC ACB> DBC         From i BD>CD               Side opposite to greater angle is longer. CD<BD

Answer:


Given: In ABC, BC is the longest side.

To prove: BAC > 23 of a right angle, i.e., BAC > 60°

Construct: Mark a point D on side AC such that AD = AB = BD.

Proof:

In ABD,

 AD = AB = BD    (By construction)

1=3=4=60°

Now,BAC=1+2=60°+2but 60° =23 of a right angleSo, BAC=23 of a right angle + 2

Hence, BAC > 23 of a right angle.



Page No 298:

Question 13:


Given: In ABC, BC is the longest side.

To prove: BAC > 23 of a right angle, i.e., BAC > 60°

Construct: Mark a point D on side AC such that AD = AB = BD.

Proof:

In ABD,

 AD = AB = BD    (By construction)

1=3=4=60°

Now,BAC=1+2=60°+2but 60° =23 of a right angleSo, BAC=23 of a right angle + 2

Hence, BAC > 23 of a right angle.

Answer:



Given: Quadrilateral ABCD

To prove:
(i) CD + DA + AB > BC
(ii) CD + DA + AB + BC > 2AC

Proof:
(i)
In ACD,CD+DA>CA        ...1In ABC,AB+CA>BC         ...2
Adding (1) and (2), we getCD+DA+AB+CA>CA+BC AB+CD+DA>BC

(ii)
 In CDA,CD+DA>CA          ...3In BCA,BC + AB > CA       ...4
Adding (3) and (4), we getCD+AD+BC+AB>CA+CA CD+AD+BC+AB>2CA

Page No 298:

Question 14:



Given: Quadrilateral ABCD

To prove:
(i) CD + DA + AB > BC
(ii) CD + DA + AB + BC > 2AC

Proof:
(i)
In ACD,CD+DA>CA        ...1In ABC,AB+CA>BC         ...2
Adding (1) and (2), we getCD+DA+AB+CA>CA+BC AB+CD+DA>BC

(ii)
 In CDA,CD+DA>CA          ...3In BCA,BC + AB > CA       ...4
Adding (3) and (4), we getCD+AD+BC+AB>CA+CA CD+AD+BC+AB>2CA

Answer:


Given:
In triangle ABC, O is any interior point.
We know that any segment from a point O inside a triangle to any vertex of the triangle cannot be longer than the two sides adjacent to the vertex.
Thus, OA cannot be longer than both AB and CA (if this is possible, then O is outside the triangle).

(i) OA cannot be longer than both AB and CA.​
AB>OB      ...(1)AC>OC       ...(2)Thus, AB+AC>OB+OC      ...[Adding (1) and(2)]

(ii) AB>OA......(3)BC>OB.....(4)CA>OC.....(5)
Adding the above three equations, we get:
Thus, AB+BC+CA>OA+OB+OC              ...(6)

OA cannot be longer than both AB and CA.​
AB>OB.....(5)AC>OC.....(6)AB+AC>OB+OC..........[On adding (5) and (6)]
Thus, the first equation to be proved is shown correct.

(iii) Now, consider the triangles OAC, OBA and OBC.
We have:
 OA+OC>ACOA+OB>ABOB+OC>BCAdding the above three equations, we get:OA+OC+OA+OB+OB+OC>AB+AC+BC2OA+OB+OC>AB+AC+BCThus, OA+OB+OC>12AB+BC+CA

Page No 298:

Question 15:


Given:
In triangle ABC, O is any interior point.
We know that any segment from a point O inside a triangle to any vertex of the triangle cannot be longer than the two sides adjacent to the vertex.
Thus, OA cannot be longer than both AB and CA (if this is possible, then O is outside the triangle).

(i) OA cannot be longer than both AB and CA.​
AB>OB      ...(1)AC>OC       ...(2)Thus, AB+AC>OB+OC      ...[Adding (1) and(2)]

(ii) AB>OA......(3)BC>OB.....(4)CA>OC.....(5)
Adding the above three equations, we get:
Thus, AB+BC+CA>OA+OB+OC              ...(6)

OA cannot be longer than both AB and CA.​
AB>OB.....(5)AC>OC.....(6)AB+AC>OB+OC..........[On adding (5) and (6)]
Thus, the first equation to be proved is shown correct.

(iii) Now, consider the triangles OAC, OBA and OBC.
We have:
 OA+OC>ACOA+OB>ABOB+OC>BCAdding the above three equations, we get:OA+OC+OA+OB+OB+OC>AB+AC+BC2OA+OB+OC>AB+AC+BCThus, OA+OB+OC>12AB+BC+CA

Answer:



Given: AD ⊥ BC and CD BD

To prove: AC AB

Proof:

ADB=ADC=90°       ADBC      ...1BAD<DAC                  CD>BD      ...2

In ABD,

Using angle sum property of a triangle,

B=180°-ADB-BADB=90°-BAD         ...3

In ADC,

Using angle sum property of a triangle,

ACD=90°-DAC      ...4

From (2), (3) and (4), we get

B>C

Therefore, AC>AB.

Page No 298:

Question 16:



Given: AD ⊥ BC and CD BD

To prove: AC AB

Proof:

ADB=ADC=90°       ADBC      ...1BAD<DAC                  CD>BD      ...2

In ABD,

Using angle sum property of a triangle,

B=180°-ADB-BADB=90°-BAD         ...3

In ADC,

Using angle sum property of a triangle,

ACD=90°-DAC      ...4

From (2), (3) and (4), we get

B>C

Therefore, AC>AB.

Answer:



Given: CD DE

To prove: AB AC BE

Proof:

In ABC,

AB+AC>BC       ...1

In BED,

BD+CD>BEBC>BE        ...2

From (1) and (2), we get

AB AC BE



Page No 300:

Question 1:



Given: CD DE

To prove: AB AC BE

Proof:

In ABC,

AB+AC>BC       ...1

In BED,

BD+CD>BEBC>BE        ...2

From (1) and (2), we get

AB AC BE

Answer:

(a) SSA
SSA is not a criterion for congruence of triangles.

Page No 300:

Question 2:

(a) SSA
SSA is not a criterion for congruence of triangles.

Answer:

(c) CABPQR
As,
AB = QR,   (given)
BC = RP,     (given)
CA = PQ     (given)


CABPQR



Page No 301:

Question 3:

(c) CABPQR
As,
AB = QR,   (given)
BC = RP,     (given)
CA = PQ     (given)


CABPQR

Answer:

(a) BC = PQ

If ABCPQR, then
BC = QR
Hence, the correct answer is option (a).

Page No 301:

Question 4:

(a) BC = PQ

If ABCPQR, then
BC = QR
Hence, the correct answer is option (a).

Answer:

In ABC, we have:
AB = AC 
B = 50°
Since ABC is an isosceles triangle, we have:
C=B
C=50°
In triangle ABC, we have:
A+B+C=180°A+50+50=180°A=180°-100°A=80°
Hence, the correct answer is option (c).

Page No 301:

Question 5:

In ABC, we have:
AB = AC 
B = 50°
Since ABC is an isosceles triangle, we have:
C=B
C=50°
In triangle ABC, we have:
A+B+C=180°A+50+50=180°A=180°-100°A=80°
Hence, the correct answer is option (c).

Answer:

Given: In âˆ†ABCBC AB and ∠B = 80°. 

In âˆ†ABC,

As, AB=BC

A=C

Let A=C=x

Using angle sum property of a triangle,

A+B+C=180°x+80°+ x=180°2x=180°-80°2x=100°

x=100°2x=50°A=50°

Hence, the correct option is (a).

Page No 301:

Question 6:

Given: In âˆ†ABCBC AB and ∠B = 80°. 

In âˆ†ABC,

As, AB=BC

A=C

Let A=C=x

Using angle sum property of a triangle,

A+B+C=180°x+80°+ x=180°2x=180°-80°2x=100°

x=100°2x=50°A=50°

Hence, the correct option is (a).

Answer:


Given: In âˆ†ABC, ∠C = ∠A, BC = 4 cm and AC = 5 cm.

In âˆ†ABC,

As, ∠C = ∠A                   (Given)

Therefore, BC=AB       (Sides opposite to equal angles.)

BC=AB=4 cm

Hence, the correct option is (a).

Page No 301:

Question 7:


Given: In âˆ†ABC, ∠C = ∠A, BC = 4 cm and AC = 5 cm.

In âˆ†ABC,

As, ∠C = ∠A                   (Given)

Therefore, BC=AB       (Sides opposite to equal angles.)

BC=AB=4 cm

Hence, the correct option is (a).

Answer:

Since, 4 + 2.5 = 6.5

So, 6.5 cm cannot be the third side of the triangle, as the sum of two sides of a triangle is always greater than the third side.

Hence, the correct option is (b).

Page No 301:

Question 8:

Since, 4 + 2.5 = 6.5

So, 6.5 cm cannot be the third side of the triangle, as the sum of two sides of a triangle is always greater than the third side.

Hence, the correct option is (b).

Answer:

(b) AB > AC

In ABC, we have:
C>B
The side opposite to the greater angle is larger.
AB>AC

Page No 301:

Question 9:

(b) AB > AC

In ABC, we have:
C>B
The side opposite to the greater angle is larger.
AB>AC

Answer:

(b)​ E=60°

ABCFDE
AB = 5cm, B=40°,A=80° and FD = 5cm

Then A+B+C=180°80°+40°+C=180°C=60°Also, C=E
E=60°

Page No 301:

Question 10:

(b)​ E=60°

ABCFDE
AB = 5cm, B=40°,A=80° and FD = 5cm

Then A+B+C=180°80°+40°+C=180°C=60°Also, C=E
E=60°

Answer:

(c) AB

In triangle ABC, we have:
A=40°,B=60°        ...(Given)
Here, A+B+C=180°60°+40°+C=180°C=80°
∴ The side opposite toC, i.e., AB, is the longest side of triangle ABC.

Page No 301:

Question 11:

(c) AB

In triangle ABC, we have:
A=40°,B=60°        ...(Given)
Here, A+B+C=180°60°+40°+C=180°C=80°
∴ The side opposite toC, i.e., AB, is the longest side of triangle ABC.

Answer:

(c) AB > AD

AB>AC is given.

ACB>ABC

 Now, ADB>ACD    (exterior angle)ADB>ACB>ABCADB>ABDAB>AD

Page No 301:

Question 12:

(c) AB > AD

AB>AC is given.

ACB>ABC

 Now, ADB>ACD    (exterior angle)ADB>ACB>ABCADB>ABDAB>AD

Answer:

(b) OB > OC

AB >AC    (Given)
C>B
12C>12B
OCB>OBC  (Given)
OB>OC

Page No 301:

Question 13:

(b) OB > OC

AB >AC    (Given)
C>B
12C>12B
OCB>OBC  (Given)
OB>OC

Answer:

(a) 1:1

​In OAB and OAC, we have:
AB=AC   (Given)OB=OC    (Given) OA =OA    (Common side)
Thus, OABOAC     (SSS criterion)
i.e., ABO=ACO
∴ ABO : ACO=1 : 1



Page No 302:

Question 14:

(a) 1:1

​In OAB and OAC, we have:
AB=AC   (Given)OB=OC    (Given) OA =OA    (Common side)
Thus, OABOAC     (SSS criterion)
i.e., ABO=ACO
∴ ABO : ACO=1 : 1

Answer:

(b) isosceles


In ABC, BLAC.
CMAB such that BL=CM.

To prove: AB = AC

In ABL and ACM,BL=CM     (Given)BAL=CAM     (Common angle)ALB=AMC      (Each 90°)ABLACM   (AAS criterion) AB=AC   (CPCT)

Page No 302:

Question 15:

(b) isosceles


In ABC, BLAC.
CMAB such that BL=CM.

To prove: AB = AC

In ABL and ACM,BL=CM     (Given)BAL=CAM     (Common angle)ALB=AMC      (Each 90°)ABLACM   (AAS criterion) AB=AC   (CPCT)

Answer:


(b) B=E

In ABC and DEF, we have:
AB = DE      (Given)
BC = EF       (Given)
In order that ABCDEF, we must have B=E.

Page No 302:

Question 16:


(b) B=E

In ABC and DEF, we have:
AB = DE      (Given)
BC = EF       (Given)
In order that ABCDEF, we must have B=E.

Answer:


In order that ABCDEF, we must have BC = EF.
Hence, the correct answer is option (c).

Page No 302:

Question 17:


In order that ABCDEF, we must have BC = EF.
Hence, the correct answer is option (c).

Answer:

(a) isosceles but not congruent

AB =AC C=BP=Q        [C=P and B=Q]
Thus, both the triangles are isosceles but not congruent.

Page No 302:

Question 18:

(a) isosceles but not congruent

AB =AC C=BP=Q        [C=P and B=Q]
Thus, both the triangles are isosceles but not congruent.

Answer:

(c) A triangle can have two acute angles.
The sum of two acute angles is always less than 180o, thus satisfying the angle sum property of a triangle.
Therefore, a triangle can have two acute angles.

Page No 302:

Question 19:

(c) A triangle can have two acute angles.
The sum of two acute angles is always less than 180o, thus satisfying the angle sum property of a triangle.
Therefore, a triangle can have two acute angles.

Answer:


a) Sum of any two sides of a triangle > the third side

b) Difference of any two sides of a triangle < the third side

c) Sum of three altitudes of a triangle < sum of its three side

d) Sum of any two sides of a triangle > twice the median to the 3rd side

e) Perimeter of a triangle > sum of its three medians

Page No 302:

Question 20:


a) Sum of any two sides of a triangle > the third side

b) Difference of any two sides of a triangle < the third side

c) Sum of three altitudes of a triangle < sum of its three side

d) Sum of any two sides of a triangle > twice the median to the 3rd side

e) Perimeter of a triangle > sum of its three medians

Answer:

a) Each angle of an equilateral triangle measures 60°.

b) Medians of an equilateral triangle are equal.

c) In a right triangle, the hypotenuse is the longest side.

d) Drawing a ABC with AB = 3cm, BC = 4cm and CA = 7cm is not possible.



View NCERT Solutions for all chapters of Class 9