Call me

Have a Query? We will call you right away.

+91

E.g: 9876543210, 01112345678

We will give you a call shortly, Thank You

Office hours: 9:00 am to 9:00 pm IST (7 days a week)

What are you looking for?

Syllabus

4

^{x-1}x (0.5)^{3-2x}= (1/8)^{-x}31. Solve for x:

(i) log

_{3}x + log_{9}x + log_{81}x = $\frac{\text{7}}{\text{4}}$^{x}.3^{y}.5^{z}=2160 then find the value of x,y and z.I SEND THIS QUESTION MANY TIMES BUT TILL TODAY I HAVEN'T GOT THE ANSWER FOR THE QUESTION.CAN YOU PLEASE SEND ME THE ANSWER NOW AS MY 1ST SEMESTER EXAM IS STARTING SOON.?

Easy?Multiple Choice Question On The Topic Of Logarithms With Answers

? ?

? ? ? "PLEASE DON'T ?SEND THE CHAPTER'S LINK.KINDLY SEND THE FOLLOWING QUESTIONS WITH ANSWER"

5. Given log

_{10}a=b, express 10^{2b-3}in terms of a.6. Given log

_{10}x=a, log_{10}y=b and log_{10}z=c,$\left(\mathrm{i}\right)\mathrm{Write}\mathrm{down}{10}^{2\mathrm{a}-3}\mathrm{in}\mathrm{terms}\mathrm{of}\mathrm{x}.\phantom{\rule{0ex}{0ex}}\left(\mathrm{ii}\right)\mathrm{Write}\mathrm{down}{10}^{3\mathrm{b}-1}\mathrm{in}\mathrm{terms}\mathrm{of}\mathrm{y}.\phantom{\rule{0ex}{0ex}}\left(\mathrm{iii}\right)\mathrm{If}\mathrm{log}{}_{10}\mathrm{P}=2\mathrm{a}+\frac{\mathrm{b}}{2}-3\mathrm{c},\mathrm{express}\mathrm{P}\mathrm{in}\mathrm{terms}\mathrm{of}\mathrm{x},\mathrm{y}\mathrm{and}\mathrm{z}.$

(c) In figure (3) given below, ABCD is a rhombus. Find the value of x.

^{2}+b^{2}+c^{2}=74 and ab+bc+ca= 61, find a+b+c_{pi }[log_{2}(log_{7}x)] = 0i) log 5 + log 20 + log 24 + log 25 – log 60

ii) log 6 + 2 log 5 + log 4 – log 3 – log 2

^{1/3}+a^{-1/3})(a^{2/3}-1+a^{-2/3}) please solveThanku

(i) $3\left({2}^{x}+1\right)-{2}^{x+2}+5=0$

Given log

_{10}x = 2a and log_{10}y = b/2,if log

_{10}P = 3a - 2b, express P in terms of x and y.$\left(vii\right)\mathrm{log}2+16\mathrm{log}\frac{16}{15}+12\mathrm{log}\frac{25}{24}+7\mathrm{log}\frac{81}{80}$

Q17 (I) and (ii) part

${5}^{\mathrm{log}x}+{3}^{\mathrm{log}x}={3}^{\mathrm{log}x+1}-{5}^{\mathrm{log}x}$

6. Given log

_{10}x=a, log_{10}y=b and log_{10}z=c,(i) Write down 10

^{2a-3}in terms of x.(ii) write down 10

^{3b-1}in terms of y.(iii) if ${\mathrm{log}}_{10}\mathrm{P}=2\mathrm{a}+\frac{\mathrm{b}}{2}-3\mathrm{c}$, express P in terms.