Solution of Triangles
In ∆ABC, a, b and c are sides opposite to angles A, B, and C respectively.
Match the List - I with List - II
Match the List - I with List - II
List - 1 | List - 2 |
P. $\frac{a\left({b}^{2}+{c}^{2}\right)\mathrm{cos}\mathrm{A}+\mathrm{b}\left({c}^{2}+{a}^{2}\right)\mathrm{cos}\mathrm{B}+\mathrm{c}\left({\mathrm{a}}^{2}+{\mathrm{b}}^{2}\right)\mathrm{cos}C}{\mathrm{abc}}$= | (1). 2 |
Q. If cos (A − B) = 77/85, a = 5, b = 4, then area of ∆ABC is (∆ABC is acute angled triangle) |
(2). 3 |
R. If a = 5, b = 7, sin A = $\frac{3}{4}$ and sin (B + C) − $\frac{\mathrm{sin}\mathrm{A}}{sin\mathrm{B}}=\frac{1}{4k}$ then k is |
(3). 4 |
S. If b + c = 3a, then cot$\frac{B}{2}$ cot$\frac{C}{2}$ is | (4). 5 |
(5). 7 | |
(6). 8 |
View Solution
JEE Mains 0