Call me

Have a Query? We will call you right away.

+91

E.g: 9876543210, 01112345678

We will give you a call shortly, Thank You

Office hours: 9:00 am to 9:00 pm IST (7 days a week)

What are you looking for?

Syllabus

_{1}and r_{2}and the radii of smallest and largest circles which passes through (5, 6) and touches the circle (x - 2)^{2}+ y^{2}= 4, then r_{1}r_{2}is .$a)\frac{4}{41}\phantom{\rule{0ex}{0ex}}b)\frac{41}{4}\phantom{\rule{0ex}{0ex}}c)\frac{5}{41}\phantom{\rule{0ex}{0ex}}d)\frac{41}{6}$

22) An arch is in the shape of a parabola whose axis is vertically downwards and measures 80 mts across its bottom on the ground. Its highest point is 24 mts. The measure of the horizontal beam across its cross section at a height of 18 mts is __

1) 50 2) 40 3) 45 4) 6084) The locus of poles of normal chords of the parabola y^{2}= 4ax is1) (x + 2a) y^{2}= 4a^{3}2) (x + 2a) y^{2}+ 4a^{3}= 0 3) (x – 2a) y^{2}= 4a^{3}4) (x – 2a) y^{2}+ 4a^{3}= 0$a)6\phantom{\rule{0ex}{0ex}}b)12\phantom{\rule{0ex}{0ex}}c)6\sqrt{2}\phantom{\rule{0ex}{0ex}}d)24-4\sqrt{2}$

^{2}= 2x is1)The line 9x + y – 28 = 0 is the chord of contact of the point P(h,k) with respect to the circle2x

^{2}+ 2y^{2}- 3x + 5y – 7 = 0 then P isa)(3, -1) b) (3, 1) c) (-3, 1) d) no position of p5) Through the vertex O of the parabola y^{2}= 4ax a perpendicular is drawn to any tangent meeting it at P and the parabola at Q. Then OP.OQ = ___1) a^{2}2) 2a^{2 }3) 3a^{2}4) 4a^{2}7.The length of the latus-rectum of the parabola x = ay

^{2}+ by + c is$\text{(a)}\frac{\text{a}}{\text{4}}\text{(b)}\frac{\text{a}}{\text{3}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\text{(c)}\frac{\text{1}}{\text{a}}\text{(d)}\frac{\text{1}}{\text{4a}}$

^{2}+ y^{2}- 6x - 16 = 0 and x^{2}+ y^{2}- 8y - 9 = 0 is(a) y

^{2}= 4 ( 3-x ) (b) y^{2}= 4x -4(b) both (a) and (b) (d) none of these

Q. If a tangent line at a point P on a parabola makes angle $\alpha $ with its focal distance, then angle between the tangent and axis of the parabola is -

(A) $\alpha $

(B) $\alpha $/2

(C) 2$\alpha $

(D) 90$\xb0$

Six points (x

_{i},y_{i}), i=1,2,..6 are taken on the circle ${x}^{2}+{y}^{2}=4$ such that $\sum _{\mathrm{i}=1}^{6}{\mathrm{x}}_{\mathrm{i}}=8\mathrm{and}\sum _{\mathrm{i}=1}^{6}{\mathrm{y}}_{\mathrm{i}}=4$The line segment joining orthocentre of a triangle made by any three points and the centroid of the triangle made by other three points passes through a fixed points (h,k) , then h+k is

a)1

b) 2

c)3

d) 4

^{2}at (2 ,4 ) is :(a) $\left(-\frac{16}{5},\frac{27}{10}\right)$ (b) $\left(-\frac{16}{7},\frac{53}{10}\right)$ (c) â€‹$\left(-\frac{16}{5},\frac{53}{10}\right)$ (d) none of these

8. Coordinates of the focus of the parabola x

^{2}- 4x - 8y - 4 = 0 are(a) (0,2) (b) (2,1)

(c) (1,2) (d) (-2,-1)

^{2}+ y^{2}- 4y - 5 = 0 , x^{2}+ y^{2}+ 12x + 4y + 31 = 0 & x^{2}+ y^{2}+ 6x + 12y + 36 = 0 is $\left(3+\frac{5}{36}\sqrt{\lambda}\right)$, then the value of $\lambda $ must be?love Vashikaran Specialist Baba Ji +91-8872522276

Q51. The equation of the chords of length 5 and passing through the point (3, 4) on the circle 4x

^{2}+ 4y^{2}– 24x – 7y = 0 are(a) 4x + 3y = 0 (b) 4x – 3y = 0

(c) 4x + 3y – 24 = 0 (d) 4x + 3y – 12 = 0

and i. passing through the point (-4,5).

Ans: B.

$\mathbf{43}\mathbf{.}Letx,yberealvariablesatisfyingthe{x}^{2}+{y}^{2}+8x-10y-40=0.Leta=max\left\{\sqrt{\left(x+{2}^{2}\right)+{\left(y-3\right)}^{2}}\right\}andb=min\left\{\sqrt{\left(x+{2}^{2}\right)+{\left(y-3\right)}^{2}}\right\},then\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\left(a\right)a+b=18\left(b\right)a+b=4\sqrt{2}\phantom{\rule{0ex}{0ex}}\left(c\right)a-b=4\sqrt{2}\left(d\right)a.b=73$

$AvariablecircleChastheequation{x}^{2}+{y}^{2}-2({t}^{2}-3t+1)x-2({t}^{2}+2t)y+t=0,wheretisaparameter.IfthepowerofpointP(a,b)w.r.tthecircleCiscons\mathrm{tan}tthentheorferedpair(a,b)is\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\left(A\right)\left(\frac{1}{10},-\frac{1}{10}\right)\left(B\right)\left(-\frac{1}{10},\frac{1}{10}\right)\left(C\right)\left(\frac{1}{10},\frac{1}{10}\right)\left(D\right)\left(-\frac{1}{10},-\frac{1}{10}\right)$

me

$\mathbf{6}\mathbf{.}FromthepointA\left(0,3\right)inthecircle{x}^{2}+4x+{\left(y-3\right)}^{2}=0achordABisdrawnextendedtoapointMsuchthatAM=2AB.TheequationofthelocusofMis:\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\left(a\right){x}^{2}+8x+{y}^{2}=0\left(b\right){x}^{2}+8x+{\left(y-3\right)}^{2}=0\phantom{\rule{0ex}{0ex}}\left(c\right){\left(x-3\right)}^{2}+8x+{y}^{2}=0\left(d\right){x}^{2}+8x+8{y}^{2}=0$

Ans: 7.

Getting some error

Ans : option (D).

Q. A chord of a circle divides the circle into two parts such that the squares inscribed in the two parts have areas 16 and 144 square units. The radius of the circle, is

(A) $2\sqrt{10}$

(B) $6\sqrt{2}$

(C) 9

(D) $\sqrt{85}$

4√2and the length of latus rectum is4.^{2}+ y^{2}+ 20(x+y) + 20 = 0. The equation of the pair of tangents isHelp pls!

^{2}- 2y + 4x - 2xy = 0 as its normal & passing through the point (2,1) is(a) x = 0

(b) 24x + 7y = 0

(c) 7x + 24y = 0

(d) 7x - 24y = 0

Why did you derivate f(m) and how did alpha equals minus beta ?

Again why f(alpha).f(-aplha) less than zero ?

Please help me out....

30) A circle C_{1}is inscribed in a square S_{1}of side a_{1}. Another square S_{2}of side a_{2}is inscribed C_{1}. A circle C_{2}is inscribed in S_{1}. The process is continued.. if a_{1}= 4√2, and s = a_{1}+ a_{2}+ …..∞ then (√2 – 1)s = ___