Call me

Have a Query? We will call you right away.

+91

E.g: 9876543210, 01112345678

We will give you a call shortly, Thank You

Office hours: 9:00 am to 9:00 pm IST (7 days a week)

What are you looking for?

Syllabus

^{2}1] e

^{xloga} +e^{aloga}+e^{alogx}2]

^{}e^{log}^{(logx) }.log3x^{-1 }(1-x / 1+x) w.r.t.xQ.3. If velocity of a particle is given by v = (2t + 3) m/s, then average velocity in interval $0\le t\le 1s$ is :

(1) $\frac{7}{2}$ m/s

(2) $\frac{9}{2}$ m/s

(3) 4 m/s

(4) 5 m/s

^{2}(45"+x)y = x√a

^{2}-x^{2}/ 2 + a^{2}/2 sin^{-1}x/a w.r.t.x(x cosx + sinx) (e

^{x}+ x^{3})^{2}+2 / (x+3)√x-1 w.r.t.x^{3}+5x/x*logx+3cotx find dy/dx^{3}xplz ans this question fast its urgent

^{2}-x/x^{2}+2x x is not equal to zero. find d/dx f '(x)1]f(x) = e

^{x}, c =12]f(x) = e

^{x}, c =log e3]f(x) = e

^{x }, c =log 2$f\left(x\right)+f\left(x+3\right)+f\left(x+6\right)+......+f\left(x+42\right)=cons\mathrm{tan}t\forall x\in R$, then the sum of digits of 'p' is

^{2}+4 by first principlefrom these stations and move towards each other.The speed of one of them is 7 km/h more than that of the other. If the distance between them after 2 hours of their start is 34 km, nd the speed of each motorcyclist. Check your solution.

Q. Find the derivative of the given function:

$y=\frac{1}{{x}^{2}}+\frac{1}{x}$

^{2}y/(dx)2 if y=log(1-cos(x))$19.\mathrm{If}{f}_{\mathrm{o}}\left(\mathit{x}\right)=\mathrm{x}/\left(\mathrm{x}+1\right)\mathrm{and}{f}_{\mathrm{n}+1}\mathit{=}{f}_{\mathit{0}}\mathit{}\mathit{0}\mathit{}{f}_{\mathit{n}}\mathit{}for\mathit{}n\mathit{}\mathit{=}\mathit{}\mathit{0}\mathit{,}\mathit{1}\mathit{,}\mathit{2}\mathit{,}\mathit{.}\mathit{.}\mathit{.}\mathit{.}\mathit{.}\mathit{.}\mathit{.}\mathit{.}\mathit{,}\mathit{}then\mathit{}{f}_{\mathit{n}}\left(\mathit{x}\right)\mathit{}is\mathit{}\mathit{-}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\left(\mathit{A}\right)\mathit{}\frac{\mathit{x}}{\left(\mathit{n}\mathit{+}\mathit{1}\right)\mathit{x}\mathit{+}\mathit{1}}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\left(\mathit{B}\right)\mathit{}{f}_{\mathit{0}}\left(\mathit{x}\right)\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\left(\mathit{C}\right)\mathit{}\frac{\mathit{n}\mathit{x}}{\mathit{n}\mathit{x}\mathit{+}\mathit{1}}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\mathit{}\left(\mathit{D}\right)\mathit{}\frac{\mathit{x}}{\mathit{n}\mathit{x}\mathit{+}\mathit{1}}$

$\mathbf{4}\mathbf{.}\mathbf{}f\left(x\right)=\sqrt{\left(\frac{2}{{x}^{2}-x+1}-\frac{1}{x+1}-\frac{2x-1}{{x}^{3}+1}\right)}$

Q). $\frac{d}{dx}{\left(x+2\right)}^{9}$

(a) $-\frac{1}{{t}^{2}}$ (b) $\frac{1}{2a{t}^{3}}$ (c) $\frac{1}{{t}^{3}}$ (d) $\frac{1}{2a{t}^{3}}$

Ques in pic.

^{3}x (ans is sin2x)$\mathit{Q}\mathbf{.}Ify=ue{s}^{2}x,thenfind\frac{dy}{dx}.$

question no. 4

6. Solve for $x:\left|{x}^{2}-1\right|+{\left(x-1\right)}^{2}+\sqrt{{x}^{2}-3x+2}=0$

Q.12] $16{\left(2p-3q\right)}^{2}-4\left(2p-3q\right)$

Q.12. The number of even integral value(s) in the range of the function f (x) = $\frac{{\mathrm{tan}}^{2}x+8\mathrm{tan}x+15}{1+{\mathrm{tan}}^{2}x}$ is

Thanks.

Please explain more.

Q11. If x = at

^{2}, y = 2at, then $\frac{{d}^{2}y}{d{x}^{2}}$=$\left(\mathrm{a}\right)-\frac{1}{{\mathrm{t}}^{2}}\left(\mathrm{b}\right)\frac{1}{2{\mathrm{at}}^{3}}\left(\mathrm{c}\right)-\frac{1}{{\mathrm{t}}^{3}}\left(\mathrm{d}\right)-\frac{1}{2{\mathrm{at}}^{3}}$