Call me

Have a Query? We will call you right away.

+91

E.g: 9876543210, 01112345678

We will give you a call shortly, Thank You

Office hours: 9:00 am to 9:00 pm IST (7 days a week)

What are you looking for?

Syllabus

(i) Check whether * is a binary operation.

(ii) Verify whether * is associative on P(X).

(iii) Find the identity elements of P(X).

(iv) Find all invertible elements of P(X).

70%

?people read Marathi newspapers,

50%

?people?read English newspapers and

32.5%

?people?read both Marathi and English newspaper. Find the number of individuals who read.

i) At least one of the newspapers

ii) Neither Marathi nor English newspapers

iii) Only one of the newspapers.

(6) From amongst 2000 literate individuals of a town, ?people read Marathi newspapers, ?people?read English newspapers and ?people?read both Marathi and English newspaper. Find the number of individuals who read. i) At least one of the newspapers ii) Neither Marathi nor English newspapers iii) Only one of the newspapers.?people read Marathi newspapers, ?people?read English newspapers and ?people?read both Marathi and English newspaper. Find the number of individuals who read. i) At least one of the newspapers ii) Neither Marathi nor English newspapers iii) Only one of the newspapers.?people?read English newspapers and ?people?read both Marathi and English newspaper. Find the number of individuals who read. i) At least one of the newspapers ii) Neither Marathi nor English newspapers iii) Only one of the newspapers.?people?read both Marathi and English newspaper. Find the number of individuals who read. i) At least one of the newspapers ii) Neither Marathi nor English newspapers iii) Only one of the newspapers.

23. There are 280 members in a club, each have at least one beverage. 100 of them drink tea and 75 drink tea but not coffee .Then the numbers of members drinking coffee is

(1) 100 (2) 150

(3) 105 (4) 205

which of the following is true statement?

a)

in a class of 100 students,60play cricket ,50 play a volley ball and 28 play both.find the number of students who play atleast one of the two games.

f(x)=-1, -2 =x-1 , 0AND g(x)=f(|x|)+|f(x)|.

FIND g(x).

$f\left(\frac{2x-3}{x-2}\right)=5x-2,x\ne 2.Thenfindthevalueof{f}^{-1}\left(13\right)?\phantom{\rule{0ex}{0ex}}$

Justify your answer

1) f(x)=x/1+x^2=

2) f(x)=3/2-x^2=

3) f(x)={(x:1/1-x^2):x e R,x is not equal to +1 or -1}=

4) f(x)=1/2-sinx 3x=

5) f(x)=1/Root of x^2-1=

6) f(x)= ax+b/bx-a=

7) f(x)=root of 9-x^2=

pls help me out its urgent!!!

-45 degrees

- f(x)=[(x-1)(3-x)]
- f(x)=1/[x
- f(x)=[x-2/3-x]

pls experts answer this question fast its urgent^{1/2}^{2}-1]^{1/2}^{1/2}in roster method numbers can be repeted or not ?

examples of sets

how to find range and of any function and plz give examples

1] at least one of the newspaper

2] neither marathi nor english newspaper

3] only one of the newspaper.

E means element of

what is roster form of set ?

Option (3).

How? Tell some shortcut method.:

89. which of the following is a factor of

${\mathrm{x}}^{4}-8{\mathrm{x}}^{2}+4\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\left(1\right){\mathrm{x}}^{2}-2\mathrm{x}+4\phantom{\rule{0ex}{0ex}}\left(2\right){\mathrm{x}}^{2}+2\mathrm{x}-4\phantom{\rule{0ex}{0ex}}\left(3\right){\mathrm{x}}^{2}+2\mathrm{x}-2\phantom{\rule{0ex}{0ex}}\left(4\right){\mathrm{x}}^{2}-2\mathrm{x}+2\phantom{\rule{0ex}{0ex}}$

$\mathit{I}\mathit{n}\mathbf{}\mathbf{\u25b3}\mathit{A}\mathit{B}\mathit{C}\mathbf{,}\mathbf{}\mathit{i}\mathit{f}\mathbf{}\mathit{s}\mathit{i}{\mathit{n}}^{\mathbf{2}}\frac{\mathbf{A}}{\mathbf{2}}\mathbf{,}\mathbf{}\mathbf{}\mathit{s}\mathit{i}{\mathit{n}}^{\mathbf{2}}\frac{\mathbf{B}}{\mathbf{2}}\mathbf{,}\mathbf{}\mathbf{}\mathit{s}\mathit{i}{\mathit{n}}^{\mathbf{2}}\frac{\mathbf{C}}{\mathbf{2}}\mathbf{}\mathit{a}\mathit{r}\mathit{e}\mathbf{}\mathit{i}\mathit{n}\mathbf{}\mathit{H}\mathbf{.}\mathit{P}\mathbf{.}\mathbf{,}\mathbf{}\mathit{t}\mathit{h}\mathit{e}\mathit{n}\mathbf{}\mathit{a}\mathbf{,}\mathbf{}\mathit{b}\mathbf{,}\mathbf{}\mathit{c}\mathbf{}\mathit{w}\mathit{i}\mathit{l}\mathit{l}\mathbf{}\mathit{b}\mathit{e}\mathbf{}\mathit{i}\mathit{n}\mathbf{}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{\left(}\mathit{a}\mathbf{\right)}\mathbf{}\mathbf{}\mathbf{}\mathit{A}\mathbf{.}\mathbf{}\mathit{P}\mathbf{.}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{\left(}\mathit{b}\mathbf{\right)}\mathbf{}\mathbf{}\mathbf{}\mathit{G}\mathbf{.}\mathbf{}\mathit{P}\mathbf{.}\phantom{\rule{0ex}{0ex}}\mathbf{\left(}\mathit{c}\mathbf{\right)}\mathbf{}\mathbf{}\mathbf{}\mathit{H}\mathbf{.}\mathbf{}\mathit{P}\mathbf{.}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{}\mathbf{\left(}\mathit{d}\mathbf{\right)}\mathbf{}\mathbf{}\mathbf{}\mathit{n}\mathit{o}\mathbf{}\mathit{p}\mathit{a}\mathit{r}\mathit{t}\mathit{i}\mathit{c}\mathit{u}\mathit{l}\mathit{a}\mathit{r}\mathbf{}\mathit{r}\mathit{e}\mathit{l}\mathit{a}\mathit{t}\mathit{i}\mathit{o}\mathit{n}\mathbf{}$

a) (0,3)

b) (0,e)

c) (0, e+3)

d) (3,3+e)

Q If the product of 2 positive numbers is 9, then the possible value of the sum of their reciprocals lies in the

interval -

$1.[\frac{1}{3},\infty )\phantom{\rule{0ex}{0ex}}2.[1,\infty )\phantom{\rule{0ex}{0ex}}3.[\frac{4}{9},\infty )\phantom{\rule{0ex}{0ex}}4.[\frac{2}{3},\infty )$