

Formula Sheet

Unit: Atoms and Nuclei

1. Rutherford's α – particle scattering

(a) N(θ) \propto cosec⁴ (θ /2)

(b) Impact parameter, $b = \frac{(Ze^2)\cot(\theta/2)}{(4\pi\varepsilon_0)E}$, (where $E = \frac{1}{2}mu^2 = KE$ of the α – particle)

2. Distance of closest approach:

$$r_0 = \frac{2 Z e^2}{(4 \pi \varepsilon_0) E}$$
, (where $E = \frac{1}{2} mu^2 = KE$ of the α – particle)

3. Bohr's atomic model

(a)
$$L = mvr = \frac{nh}{2\pi}$$

- (b) $hv = E_i = E_f = \frac{hc}{\lambda}$
- (c) Radius of nth orbit :

$$\mathbf{r}_{n} \propto \frac{\mathbf{n}^{2}}{Z}$$
, $\mathbf{r}_{n} = \frac{\mathbf{n}^{2}}{Z} \left(\frac{\mathbf{h}^{2}}{4\pi^{2} \mathrm{m k e}^{2}} \right)$

(d) Velocity of electron in nth orbit :

$$v_n = \frac{Z}{n} \left(\frac{c}{137} \right) = \frac{Z}{n} \alpha c$$
 (where $\alpha = \frac{2\pi K e^2}{c h} = \frac{1}{137}$ = fine structures constant)

4. Total energy of electron:

(a) Potential energy, $U = -(kZe^2/r)$

(b)Kinetic energy,
$$K = \frac{1}{2} mv^2 = (kZe^2/2r)$$

(c) Total energy, $E = K + U = -(kZe^2/2r) = (U/2) = -K$

(d) K = -(U/2) or U = 2K = 2E

(e)
$$E_n = \frac{13.6 Z^2}{n^2} eV = \frac{Z^2}{n^2} \left(\frac{2\pi^2 m k^2 e^4}{h^2} \right) = \frac{2.18 \times 10^{-18} Z^2}{n^2} J$$

(f) Series formula (wave number $\overline{v} = 1/\lambda$

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \text{ were } R = \frac{2\pi^2 m k^2 e^4}{c h^3} = 1.097 \times 10^7 m^{-1}$$

(g) Series formula for H – atom

(i) Lyman series :
$$\frac{1}{\lambda} = R\left(1 - \frac{1}{n^2}\right)$$
, n=2,3,4,......∞
(ii) Balmer series : $\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$, n=3,4,5,.....∞
(iii) Paschen series : $\frac{1}{\lambda} = R\left(\frac{1}{3^2} - \frac{1}{n^2}\right)$, n=4,5,6,.....∞
(iv) Bracket series : $\frac{1}{\lambda} = R\left(\frac{1}{4^2} - \frac{1}{n^2}\right)$, n=5,6,7,.....∞
(v) P - fund series : $\frac{1}{\lambda} = R\left(\frac{1}{5^2} - \frac{1}{n^2}\right)$, n=6,7,8,....∞

5. Number of emission lines from excited state:

$$n = n(n-1)/2$$

6. Time period of revolution:

 $T_n \propto (n^3/Z^2)$

7. Frequency of revolution:

 $v_n \propto (Z^2/n^3)$

8. Current due to orbital motion:

 $I_n \propto (Z^2/n^3)$

9. Magnetic field at nucleus due to orbital motion of electron

 $B_n \propto (Z^3/n^5)$

10. Magnetic moment:

- (a) $M_n = (eL/2m) = (nhe/4\pi m);$
- (b) $M_1 = (eh/4\pi m) = \mu_B = Bohr Magneton = 9.27 \times 10^{-24} Am^2$
- **11. Magnitude of angular momentum :** $L = \sqrt{[\ell (\ell + 1)] (h/2\pi)}$
- **12.** Angle of angular momentum vector from z axis
- (a) $\cos \theta = [m_l \sqrt{\{\ell \ (\ell+1)\}}]$
- (b) the least angle is for $m_{\ell} = \ell$ i.e. $\cos \theta_{min} = [\ell/\sqrt{\{\ell \ (\ell + 1)\}}]$

13. Magnitude of spin angular momentum

$$S = \sqrt{[s(s+1)](h/2\pi)} = \frac{\sqrt{3}}{2}(h/2\pi)$$

X - RAYS

1. Continuous X – rays:

- (a) $v_{max} = (eV/h)$
- (b) $\lambda_{min} = (hc/eV) = (12400/V) \text{ Å}$

2. Characterictic X – rays :

(a) $\lambda_{K\alpha} < \lambda_{L\alpha} < \lambda_{M\alpha}$

(b) $V_{K\alpha} > V_{L\alpha} > V_{M\alpha}$

3. Frequency of Ka line:

$$v(K_{\alpha}) = \frac{3 cR}{4} (Z-1)^2 = 2.47 \times 10^{15} (Z-1)^2$$

4. Wavelength of Kα line:

 $\lambda(K_{\alpha}) = [4/3R(Z-1)^2] = [1216/(Z-1)^2] \text{\AA}$

5. Energy of K_α X-ray photon:

 $E(K_{\alpha}) = 10.2 (Z-1)^2 eV$

6. Mosley's law:

- (a) $v = a (Z-b)^2$, were $a = (3cR/4) = 2.47 \times 10^5 \text{ Hz}$
- (b) For K_{α} line, b = 1;
- (c) $\sqrt{v \alpha Z}$
- 7. Bragg's law: 2d sin $\theta = n\lambda$

8. Absorption formula:

 $I = I_0 \; e^{-\mu x}$

9. Half – value thickness:

 $x_{1/2} = (0.693/\mu)$

MATTER WAVES

1. For photons:

- (a) $E = hv = (hc/\lambda);$
- (b) $p = (hv/c) = (E/c) = (h/\lambda);$
- (c) m = $(E/c^2) = (hv/c^2) = h/c\lambda$
- (d) rest mass = 0, charge = 0, spin = 1 (h/2 π)

2. Matter waves:

(a) de Broglie wavelength, $\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{\sqrt{2 mE}} = \frac{h}{\sqrt{2 m q V}} \left[\because E = \frac{1}{2} mv^2 = qV \right]$ (i) For electron $\lambda_e = \frac{12.27}{\sqrt{V}} \text{\AA}$

(ii) For proton
$$\lambda_p = \frac{0.286}{\sqrt{V}} \text{\AA}$$

(iii) For alpha particle
$$\lambda_{\alpha} = \frac{0.101}{\sqrt{V}} \text{\AA}$$

(b) For particle at temperature T: $\lambda = \frac{h}{\sqrt{3 \text{ m KT}}} \left(E = \frac{3}{2} \text{ kT} \right)$

- (c) The wavelength of electron accelerated by potential difference of V volts is: $\lambda_e = \frac{12.27}{\sqrt{V}} \text{\AA}$
- (d) Condition for obtaining stable orbit 2 $\pi r_n = n\lambda$
- (e) The phase velocity of a de Broglie wave of wavelength λ and frequency v is:

$$v_p = v \lambda = \frac{E}{h} \times \frac{h}{mv} = \frac{mc^2}{h} \times \frac{h}{mv} = \frac{c^2}{v} i.e. v_p > c$$

(f) Group velocity, $v_g = (d\omega/dk)$. It is found that group velocity is equal to particle velocity i.e., $v_g = v$

RADIOACTIVITY

1. Decay law:

- (a) $(dN/dt) = -\lambda N;$
- (b) N = N₀ e^{$-\lambda t$}
- (c) $(N/N_0) = (1/2)^{t/T}$

2. Half life and decay constant:

(a) $\lambda = -\frac{(dN/dt)}{N}$;

(b) $\lambda T = \log_e 2$ or $T = (0.693/\lambda)$ or $\lambda = (0.693/T)$

3. Mean life:

- (a) $\tau = (1/\lambda)$ or $\lambda = (1/\tau)$;
- (b) T = 0.693τ or $\tau = 1.443$ T

4. Activity:

- (a) R = |dN/dt|;
- (b) $R = \lambda N$;
- (c) $R = R_0 e^{-\lambda t}$;
- (d) $(R/R_0) = (1/2)^{t/T};$
- (e) 1 Becquerel = 1 dps;
- (f) 1 curie = 1 ci = 3.7×10^{10} dps;
- (g) 1 Rutherford = $1 \text{ Rd} = 10^6 \text{ Rd} = 10^6 \text{ dps}$

5. Decay of active mass:

- (a) $m = m_0 e^{-\lambda t}$;
- (b) $(m/m_0) = (1/2)^{t/T}$;

(c) N =
$$\frac{6.023 \times 10^{23} \times m}{A}$$

6. Radioactive equilibrium:

 $N_A\lambda_A=N_B\lambda_B$

7. Decay constant for two channels:

(a)
$$\lambda = \lambda_1 + \lambda_2$$
;

(b)
$$T = \frac{T_1 T_2}{T_1 + T_2}$$

8. Gamma Intensity absorption:

(b) Half value thickness, $x_{1/2} = (0.693/\mu)$

NUCLEAR PHYSICS

1. Atomic mass unit:

- (a) 1 amu = 1.66×10^{-27} kg;
- (b) 1 amu \equiv 1u \equiv 931.5 MeV

2. Properties of nucleus:

- (a) Radius: $R = R_0 A^{1/3}$ where $R_0 = 1.2$ fermi
- (b) Volume: $V \alpha A \left[\because V = \frac{4}{3} \pi R^3 = \frac{4}{3} \pi R_0^3 A \right]$
- (c) Density: $\rho = 2.4 \times 10^{17} \text{ Kg/m}^3$ (ρ is independent of A)

3. Mass defect:

 Δ M=Zm_p + (A-Z) m_n - M

4. Packing fraction:

 $f = \Delta/A = mass excess per nucleon [\Delta = -\Delta M = mass excess]$

5. Binding energy:

 $\Delta E = BE = (\Delta M)c^2$
