Formula Sheet
 Unit: Atoms and Nuclei

1. Rutherford's α - particle scattering
(a) $\mathrm{N}(\theta) \propto \operatorname{cosec}^{4}(\theta / 2)$
(b) Impact parameter, $\mathrm{b}=\frac{\left(Z \mathrm{e}^{2}\right) \cot (\theta / 2)}{\left(4 \pi \varepsilon_{0}\right) \mathrm{E}}$, (where $\mathrm{E}=\frac{1}{2} \mathrm{mu}^{2}=\mathrm{KE}$ of the α - particle)

2. Distance of closest approach:

$$
\mathrm{r}_{0}=\frac{2 \mathrm{Ze}^{2}}{\left(4 \pi \varepsilon_{0}\right) \mathrm{E}},\left(\text { where } \mathrm{E}=\frac{1}{2} \mathrm{mu}^{2}=\mathrm{KE} \text { of the } \alpha-\text { particle }\right)
$$

3. Bohr's atomic model

(a) $\mathrm{L}=\mathrm{mvr}=\frac{\mathrm{nh}}{2 \pi}$
(b) $\mathrm{hv}=\mathrm{E}_{i}=\mathrm{E}_{f}=\frac{\mathrm{hc}}{\lambda}$
(c) Radius of nth orbit:

$$
\mathrm{r}_{\mathrm{n}} \propto \frac{\mathrm{n}^{2}}{\mathrm{Z}}, \quad \mathrm{r}_{\mathrm{n}}=\frac{\mathrm{n}^{2}}{\mathrm{Z}}\left(\frac{\mathrm{~h}^{2}}{4 \pi^{2} \mathrm{mke}^{2}}\right)
$$

(d) Velocity of electron in nth orbit :

$$
\mathrm{v}_{\mathrm{n}}=\frac{\mathrm{Z}}{\mathrm{n}}\left(\frac{\mathrm{c}}{137}\right)=\frac{\mathrm{Z}}{\mathrm{n}} \alpha \mathrm{c} \quad\left(\text { where } \alpha=\frac{2 \pi \mathrm{Ke}^{2}}{\mathrm{ch}}=\frac{1}{137}=\right.\text { fine structures constant) }
$$

4. Total energy of electron:

(a) Potential energy, $U=-\left(\mathrm{kZe}^{2} / \mathrm{r}\right)$
(b)Kinetic energy, $K=\frac{1}{2} \mathrm{mv}^{2}=\left(\mathrm{kZe}^{2} / 2 \mathrm{r}\right)$
(c) Total energy, $\mathrm{E}=\mathrm{K}+\mathrm{U}=-\left(\mathrm{kZe}^{2} / 2 \mathrm{r}\right)=(\mathrm{U} / 2)=-\mathrm{K}$
(d) $\mathrm{K}=-(\mathrm{U} / 2)$ or $\mathrm{U}=2 \mathrm{~K}=2 \mathrm{E}$
(e) $E_{n}=\frac{13.6 Z^{2}}{n^{2}} e V=\frac{Z^{2}}{n^{2}}\left(\frac{2 \pi^{2} m^{2} e^{4}}{h^{2}}\right)=\frac{2.18 \times 10^{-18} Z^{2}}{n^{2}} J$
(f) Series formula (wave number $\overline{\mathrm{v}}=1 / \lambda$ $\frac{1}{\lambda}=\mathrm{RZ}^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$ were $\mathrm{R}=\frac{2 \pi^{2} \mathrm{~m} \mathrm{k}^{2} \mathrm{e}^{4}}{\mathrm{c} \mathrm{h}^{3}}=1.097 \times 10^{7} \mathrm{~m}^{-1}$
(g) Series formula for $\mathrm{H}-$ atom
(i) Lyman series : $\frac{1}{\lambda}=R\left(1-\frac{1}{\mathrm{n}^{2}}\right), \mathrm{n}=2,3,4, \ldots \ldots \ldots$
(ii) Balmer series : $\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{2^{2}}-\frac{1}{\mathrm{n}^{2}}\right), \mathrm{n}=3,4,5, \ldots \ldots \ldots$
(iii) Paschen series : $\frac{1}{\lambda}=R\left(\frac{1}{3^{2}}-\frac{1}{n^{2}}\right), n=4,5,6, \ldots \ldots \ldots \infty$
(iv) Bracket series : $\frac{1}{\lambda}=R\left(\frac{1}{4^{2}}-\frac{1}{n^{2}}\right), \mathrm{n}=5,6,7, \ldots \ldots \ldots$
(v) $\mathrm{P}-$ fund series : $\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{5^{2}}-\frac{1}{\mathrm{n}^{2}}\right), \mathrm{n}=6,7,8, \ldots \ldots \ldots$

5. Number of emission lines from excited state:

$$
\mathrm{n}=\mathrm{n}(\mathrm{n}-1) / 2
$$

6. Time period of revolution:

$\mathrm{T}_{\mathrm{n}} \propto\left(\mathrm{n}^{3} / \mathrm{Z}^{2}\right)$

7. Frequency of revolution:

$$
\mathrm{v}_{\mathrm{n}} \propto\left(\mathrm{Z}^{2} / \mathrm{n}^{3}\right)
$$

8. Current due to orbital motion:

$$
\mathrm{I}_{\mathrm{n}} \propto\left(\mathrm{Z}^{2} / \mathrm{n}^{3}\right)
$$

9. Magnetic field at nucleus due to orbital motion of electron
$\mathrm{B}_{\mathrm{n}} \propto\left(\mathrm{Z}^{3} / \mathrm{n}^{5}\right)$

10. Magnetic moment:

(a) $\mathrm{M}_{\mathrm{n}}=(\mathrm{eL} / 2 \mathrm{~m})=(\mathrm{nhe} / 4 \pi \mathrm{~m})$;
(b) $\mathrm{M}_{1}=(\mathrm{eh} / 4 \pi \mathrm{~m})=\mu_{\mathrm{B}}=$ Bohr Magneton $=9.27 \times 10^{-24} \mathrm{Am}^{2}$
11. Magnitude of angular momentum :
$L=\sqrt{ }[\ell(\ell+1)](h / 2 \pi)$
12. Angle of angular momentum vector from z - axis
(a) $\cos \theta=\left[\mathrm{m}_{l} \sqrt{ }\{\ell(\ell+1)\}\right]$
(b) the least angle is for $\mathrm{m}_{\ell}=\ell$ i.e. $\cos \theta_{\min }=[\ell / \sqrt{ }\{\ell(\ell+1)\}]$

13. Magnitude of spin angular momentum

$$
\mathrm{S}=\sqrt{ }[\mathrm{s}(\mathrm{~s}+1)](\mathrm{h} / 2 \pi)=\frac{\sqrt{3}}{2}(\mathrm{~h} / 2 \pi)
$$

X - RAYS

1. Continuous X - rays:

(a) $\mathrm{v}_{\text {max }}=(\mathrm{eV} / \mathrm{h})$
(b) $\lambda_{\text {min }}=(\mathrm{hc} / \mathrm{eV})=(12400 / \mathrm{V}) \AA$
2. Characterictic X - rays :
(a) $\lambda_{\text {K } \alpha}<\lambda_{\mathrm{L} \alpha}<\lambda_{\mathrm{M} \alpha}$
(b) $\mathrm{V}_{\mathrm{K} \alpha}>\mathrm{V}_{\mathrm{L} \alpha}>\mathrm{V}_{\mathrm{M} \alpha}$

3. Frequency of $K \alpha$ line:

$$
\mathrm{v}\left(\mathrm{~K}_{\alpha}\right)=\frac{3 \mathrm{cR}}{4}(\mathrm{Z}-1)^{2}=2.47 \times 10^{15}(\mathrm{Z}-1)^{2}
$$

4. Wavelength of $K \alpha$ line:

$$
\lambda\left(\mathrm{K}_{\alpha}\right)=\left[4 / 3 \mathrm{R}(\mathrm{Z}-1)^{2}\right]=\left[1216 /(\mathrm{Z}-1)^{2}\right] \AA
$$

5. Energy of K_{α} X-ray photon:

$$
\mathrm{E}\left(\mathrm{~K}_{\alpha}\right)=10.2(\mathrm{Z}-1)^{2} \mathrm{eV}
$$

6. Mosley's law:
(a) $\mathrm{v}=\mathrm{a}(\mathrm{Z}-\mathrm{b})^{2}$, were $\mathrm{a}=(3 \mathrm{cR} / 4)=2.47 \times 10^{5} \mathrm{~Hz}$
(b) For K_{a} line, $\mathrm{b}=1$;
(c) $\sqrt{V} \alpha Z$

7. Bragg's law:

$2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$
8. Absorption formula:
$\mathrm{I}=\mathrm{I}_{0} \mathrm{e}^{-\mu \mathrm{x}}$
9. Half - value thickness:

$$
\mathrm{x}_{1 / 2}=(0.693 / \mu)
$$

MATTER WAVES

1. For photons:

(a) $\mathrm{E}=\mathrm{hv}=(\mathrm{hc} / \lambda)$;
(b) $\mathrm{p}=(\mathrm{hv} / \mathrm{c})=(\mathrm{E} / \mathrm{c})=(\mathrm{h} / \lambda)$;
(c) $m=\left(E / c^{2}\right)=\left(h v / c^{2}\right)=h / c \lambda$
(d) rest mass $=0$, charge $=0$, spin $=1(h / 2 \pi)$

2. Matter waves:

(a) de Broglie wavelength, $\lambda=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mq} \mathrm{V}}}\left[\because E=\frac{1}{2} \mathrm{mv}^{2}=\mathrm{qV}\right]$
(i) For electron $\lambda_{e}=\frac{12.27}{\sqrt{V}} \AA$
(ii) For proton $\lambda_{\mathrm{p}}=\frac{0.286}{\sqrt{V}} \AA$
(iii) For alpha particle $\lambda_{\alpha}=\frac{0.101}{\sqrt{V}} \AA$
(b) For particle at temperature $T: \lambda=\frac{h}{\sqrt{3 \mathrm{mKT}}}\left(E=\frac{3}{2} \mathrm{kT}\right)$
(c) The wavelength of electron accelerated by potential difference of V volts is: $\lambda_{\mathrm{e}}=\frac{12.27}{\sqrt{V}} \AA$
(d) Condition for obtaining stable orbit $2 \pi \mathrm{r}_{\mathrm{n}}=\mathrm{n} \lambda$
(e) The phase velocity of a de Broglie wave of wavelength λ and frequency v is:

$$
\mathrm{v}_{\mathrm{p}}=\mathrm{v} \lambda=\frac{\mathrm{E}}{\mathrm{~h}} \times \frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{mc}^{2}}{\mathrm{~h}} \times \frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{c}^{2}}{\mathrm{v}} \text { i.e. } \mathrm{v}_{\mathrm{p}}>\mathrm{c}
$$

(f) Group velocity, $\mathrm{v}_{\mathrm{g}}=(\mathrm{d} \omega / \mathrm{dk})$. It is found that group velocity is equal to particle velocity i.e., $\mathrm{v}_{\mathrm{g}}=\mathrm{v}$

RADIOACTIVITY

1. Decay law:

(a) $(\mathrm{dN} / \mathrm{dt})=-\lambda \mathrm{N}$;
(b) $\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t}$
(c) $\left(\mathrm{N} / \mathrm{N}_{0}\right)=(1 / 2)^{t / \mathrm{T}}$
2. Half life and decay constant:
(a) $\lambda=-\frac{(\mathrm{dN} / \mathrm{dt})}{\mathrm{N}}$;
(b) $\lambda \mathrm{T}=\log _{\mathrm{e}} 2$ or $\mathrm{T}=(0.693 / \lambda)$ or $\lambda=(0.693 / \mathrm{T})$
3. Mean life:
(a) $\tau=(1 / \lambda)$ or $\lambda=(1 / \tau)$;
(b) $\mathrm{T}=0.693 \tau$ or $\tau=1.443 \mathrm{~T}$

4. Activity:

(a) $\mathrm{R}=|\mathrm{dN} / \mathrm{dt}|$;
(b) $\mathrm{R}=\lambda \mathrm{N}$;
(c) $\mathrm{R}=\mathrm{R}_{0} \mathrm{e}^{-\lambda \mathrm{t}}$;
(d) $\left(\mathrm{R} / \mathrm{R}_{0}\right)=(1 / 2)^{\mathrm{t/T}}$;
(e) 1 Becquerel $=1 \mathrm{dps}$;
(f) 1 curie $=1 \mathrm{ci}=3.7 \times 10^{10} \mathrm{dps}$;
(g) 1 Rutherford $=1 \mathrm{Rd}=10^{6} \mathrm{Rd}=10^{6} \mathrm{dps}$
5. Decay of active mass:
(a) $\mathrm{m}=\mathrm{m}_{0} \mathrm{e}^{-\lambda t}$;
(b) $\left(\mathrm{m} / \mathrm{m}_{0}\right)=(1 / 2)^{t / \mathrm{T}}$;
(c) $\mathrm{N}=\frac{6.023 \times 10^{23} \times \mathrm{m}}{\mathrm{A}}$

6. Radioactive equilibrium:

$\mathrm{N}_{\mathrm{A}} \lambda_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}} \lambda_{\mathrm{B}}$

7. Decay constant for two channels:

(a) $\lambda=\lambda_{1}+\lambda_{2}$;
(b) $\mathrm{T}=\frac{\mathrm{T}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}+\mathrm{T}_{2}}$
8. Gamma Intensity absorption:
(a) $\mathrm{I}=\mathrm{I}_{0} \mathrm{e}^{-\mu x}$;
(b) Half value thickness, $\mathrm{x}_{1 / 2}=(0.693 / \mu)$

NUCLEAR PHYSICS

1. Atomic mass unit:

(a) $1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$;
(b) $1 \mathrm{amu} \equiv 1 \mathrm{u} \equiv 931.5 \mathrm{MeV}$

2. Properties of nucleus:

(a) Radius: $\mathrm{R}=\mathrm{R}_{0} \mathrm{~A}^{1 / 3}$ where $\mathrm{R}_{0}=1.2$ fermi
(b) Volume: $\mathrm{V} \alpha \mathrm{A}\left[\because \mathrm{V}=\frac{4}{3} \pi \mathrm{R}^{3}=\frac{4}{3} \pi \mathrm{R}_{0}^{3} \mathrm{~A}\right]$
(c) Density: $\rho=2.4 \times 10^{17} \mathrm{Kg} / \mathrm{m}^{3}$ (ρ is independent of A)
3. Mass defect:
$\Delta \mathrm{M}=\mathrm{Zm}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}-\mathrm{M}$

4. Packing fraction:

$$
f=\Delta / \mathrm{A}=\text { mass excess per nucleon }[\Delta=-\Delta \mathrm{M}=\text { mass excess }]
$$

5. Binding energy:

$$
\Delta \mathrm{E}=\mathrm{BE}=(\Delta \mathrm{M}) \mathrm{c}^{2}
$$

[^0]
[^0]:

