Rs Aggarwal 2019 Solutions for Class 8 Math Chapter 8 Linear Equations are provided here with simple step-by-step explanations. These solutions for Linear Equations are extremely popular among Class 8 students for Math Linear Equations Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rs Aggarwal 2019 Book of Class 8 Math Chapter 8 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Rs Aggarwal 2019 Solutions. All Rs Aggarwal 2019 Solutions for class Class 8 Math are prepared by experts and are 100% accurate.

Page No 107:

Question 1:

Solve:
8x + 3 = 27 + 2x

Answer:

   8x + 3 = 27 + 2x 8x - 2x = 27 - 3 6x = 24 x = 246= 4 x=4

Page No 107:

Question 2:

Solve:
5x + 7 = 2x − 8

Answer:

5x + 7 = 2x - 8 5x - 2x = -8 -7 3x = -15 x = -153= -5 x = -5

Page No 107:

Question 3:

Solve:
2z − 1 = 14 − z

Answer:

2z - 1 = 14 - z  2z + z = 14 + 1  3z = 15 z= 153= 5 z = 5

Page No 107:

Question 4:

Solve:
9x + 5 = 4(x − 2) + 8

Answer:

9x+ 5 = 4( x-2) + 8  9x + 5 = 4x - 8 + 8  9x + 5 = 4x  9x - 4x = -5  5x = -5  x= -55 = -1 x = -1

Page No 107:

Question 5:

Solve:
7y5=y-4

Answer:

7y5= y - 4By cross multiplication: 7y = 5(y - 4) 7y = 5y - 20 7y - 5y =-20 2y = -20 y = -202= -10 y = -10

Page No 107:

Question 6:

Solve:
3x+23=2x+1

Answer:

3x + 23 = 2x + 1                 3x - 2x = 1 - 23                  x = 11 - 23              (L.C.M. of 1 and 3 is 3)                              x = 3 - 23                  x = 13                  x = 13 x = 13

Page No 107:

Question 7:

Solve:
15(y − 4) − 2(y − 9) + 5(y + 6) = 0

Answer:

    15 (y - 4) - 2 (y - 9) +5 (y + 6) = 0 15y - 60 - 2y + 18 + 5y + 30 = 015y - 2y + 5y -60 + 18 + 30 = 018y - 12 = 0  18y = 12  y = 1218= 23 y = 23                 

Page No 107:

Question 8:

Solve:
3(5x − 7) − 2(9x − 11) = 4(8x − 13) − 17

Answer:

3(5x - 7) - 2(9x - 11) = 4(8x - 13) - 1715x - 21 - 18x + 22 = 32x - 52 - 1715x -18x - 21 + 22 = 32x -69-3x +1 = 32x -691 + 69 = 32x + 3x  70 = 35x 35x= 70               (by transposition) x= 7035= 2  x= 2                                  

Page No 107:

Question 9:

Solve:
x-52-x-35=12

Answer:

 x - 52 - x - 35 = 12 10 (x - 52) - 10 (x - 35) = 10 (12)          (multiplying throughout by 10, which is the L.C.M. of 2, 2 and 5) 5 (x - 5) -2 (x - 3) = 5 5x - 25 - 2x +6 = 5 5x - 2x -25 +6 = 5 3x -19 = 5  3x= 5 + 19 3x = 24 x = 243= 8  x = 8

Page No 107:

Question 10:

Solve:
3t-24-2t+33=23-t

Answer:

3t - 24 - 2t + 33 = 23 - t 3t - 24 - 2t + 33 = 2 - 3t3       (3 is the L.C.M. of 1 and 3)  12 (3t - 24) - 12 ( 2t + 33) = 12 (2 - 3t3)      (multiplying throughout by 12, which is the L.C.M. of 4, 3 and 3) 3 (3t - 2) - 4 (2t + 3) = 4( 2 - 3t) 9t - 6 - 8t - 12 = 8 - 12t 9t - 8t - 6 - 12 = 8 - 12t t - 18 = 8 - 12t t + 12t = 18 + 8 13t = 26 t = 2613 = 2 t = 2

Page No 107:

Question 11:

Solve:
2x+75-3x+112=2x+83-5

Answer:

2x + 75 - 3x + 112 = 2x + 83 - 5 2x + 75 - 3x + 112 = 2x + 8 - 153   (L.C.M. of 3 and 1 is 3) 30 (2x + 75) - 30 ( 3x + 112) = 30 (2x + 8 - 153)                  (multiplying throughout by 30, which is the L.C.M. of 5, 2 and 3) 6 (2x + 7) - 15 (3x + 11) = 10 (2x + 8 - 15) 12x + 42 -  45x - 165 = 20x -70 12x - 45x + 42 - 165 = 20x -70-33x - 123 = 20x -70-33x - 20 x = 123 - 70 -53x = 53 x = 53-53   x = -1  x = -1

Page No 107:

Question 12:

Solve:
5x-46=4x+1-3x+102

Answer:

5x - 46 = 4x + 1 - 3x + 102  5x - 46= 2 (4x + 1) - 3x - 102      (L.C.M. of 1 and 2 is 2) 5x - 46 = 8x + 2 - 3x - 102 5x - 46 = 8x - 3x + 2 - 102 5x - 46 = 5x -82 2 ( 5x - 4) = 6 (5x -8) 10x - 8 = 30x -48 10x - 30x = -48 + 8  -20x = -40  x = -40-20=  2 x = 2

Page No 107:

Question 13:

Solve:
5x-13(x+1)=6x+130

Answer:

5x - 13(x + 1) = 6 (x + 130) 5x - 1(x + 1)3 = 6 (30x + 130)        (L.C.M. of 1 and 30 is 30) 5x - (x + 1)3 = 30x + 15 15x - x - 13= 30x + 15        (L.C.M. of 1 and 3 is 3) 14x -13 = 30x + 15 5 ( 14x - 1) = 3 ( 30x + 1)       (by cross multiplication) 70 x -5 = 90 x + 3 70x - 90x = 3 +5 -20x = 8 x = 8-20 = -25 x =-25

Page No 107:

Question 14:

Solve:
4-2(z-43=12(2z+5)

Answer:

4 - 2( z-4 )3 = 12( 2z+5 ) 12 - 2( z-4)3 = 1( 2z+5)2       (L.C.M.of 1 and 3 is 3 ) 12 - 2z +83 = 2z + 52 20- 2z3 = 2z + 52 2( 20-2z) = 3( 2z+5)        (by cross multiplication) 40- 4z = 6z + 15 40- 15 = 6z + 4z 25= 10z  10z = 25        (by transposition) z = 2510=52 z = 52

Page No 107:

Question 15:

Solve:
3(y-5)4-4y=3-(y-3)2

Answer:

3(y-5)4 - 4y = 3 - (y-3)2 3y - 154 - 4y = 3 - y - 32 3y - 15 - 16y4 = 3 - y - 32       (L.C.M.of 4 and 1 is 4) -13y - 154 = 6 - y+ 32  -13y - 154 = 9 - y2 2(-13y-15) = 4(9 - y) -26y - 30 = 36 - 4y -26y + 4y = 36 + 30 - 22y = 66 22y = -66          (multiplying both the sides with a -ve sign) y = -6622 = -3 y = -3

Page No 107:

Question 16:

Solve:
8x-33x=2

Answer:

8x - 33x = 2 8x - 3 = 2 ( 3x )    (by cross multiplication) 8x - 3 = 6x 8x - 6x = 3 2x = 3 x= 32 x = 32

Page No 107:

Question 17:

Solve:
9x7-6x=15

Answer:

9x7 - 6x = 15 9x7 - 6x = 151 1 ( 9x) = 15 ( 7-6x)         (by cross multiplication) 9x = 105 - 90x 9x + 90x = 105 99x = 105 x = 10599= 3533 x = 3533

Page No 107:

Question 18:

Solve:
3x5x+2=-4

Answer:

3x5x+ 2 = -4 3x5x+ 2 = -41 1 ( 3x) = -4( 5x +2)  (by cross multiplication) 3x = -20x -8 3x + 20x = -8 23x = -8 x = -823 x= -823

Page No 107:

Question 19:

Solve:
6y-52y=79

Answer:

6y - 52y = 79 9 (6y - 5) = 7( 2y)     (by cross multiplication) 54y - 45 = 14y 54y - 14y = 45 40y = 45 y = 4540= 98  y = 98

Page No 107:

Question 20:

Solve:
2-9z17-4z=45

Answer:

2 - 9z17 - 4z = 45 5 ( 2-9z) = 4 ( 17-4z)       (by cross multiplication) 10 - 45z = 68 - 16z 10 - 68 = 45z - 16z -58 = 29z 29z = -58        (by transposition) z = - 58  29 = -2 z= -2

Page No 107:

Question 21:

Solve:
4x+79-3x=14

Answer:

4x + 79 - 3x = 14 4 (4x + 7) = 1 (9 - 3x)       (by cross multiplication) 16x + 28 = 9 - 3x 16x + 3x = 9 - 28 19x = - 19 x = -1919 = -1 x = -1

Page No 107:

Question 22:

Solve:
7y+4y+2=-43

Answer:

7y + 4y + 2 = -43 3 (7y + 4) = -4 (y + 2)                                    (by cross multiplication) 21y + 12 = -4y - 8 21y + 4y = -8 -12 25y = -20 y = -2025= -45  y = -45

Page No 107:

Question 23:

Solve:
15(2-y)-5(y+6)1-3y=10

Answer:

15 (2-y) -5 (y+6)1-3y = 10 30 - 15y - 5y - 301 - 3y = 10 -20y1 - 3y = 10 1 (-20y) = 10 (1 - 3y)                  (by cross multiplication) -20y = 10 - 30y -20y + 30y = 10 10y = 10 y = 1010 = 1 y = 1

Page No 107:

Question 24:

Solve:
2x-(7-5x)9x-(3+4x)=76

Answer:

2x - (7-5x)9x - (3 + 4x) = 76 2x - 7 + 5x9x - 3 - 4x = 76 7x - 75x - 3 = 76 6 (7x - 7) = 7 (5x - 3)     (by cross multiplication) 42x - 42 = 35x - 21 42x - 35x = 42 - 21 7x = 21 x = 217 =3  x = 3

Page No 107:

Question 25:

Solve:
m-(m-1)2=1-(m-2)3

Answer:

m - ( m-1 )2 = 1 - ( m-2 )3 2m - m + 12 = 1 - ( m-2 )3            (L.C.M.of 1 and 2 is 2 ) m + 12 = 3 -m + 23                           (L.C.M.of 1 and 3 is 3 ) m + 12 = 5 - m3 3 ( m + 1 ) = 2 ( 5 - m )                        (by cross multiplication) 3m + 3 = 10 - 2m 3m + 2m = 10 - 3 5m = 7 m= 75  m = 75

Page No 107:

Question 26:

Solve:
3x+54x+2=3x+44x+7

Answer:

3x + 54x + 2 = 3x + 44x + 7 (4x + 7)(3x + 5) = (4x + 2)(3x +4)           ( by cross multiplication) 12x2 +  20x + 21x + 35 = 12x2  + 16x + 6x +8 12x2 +  41x + 35 = 12x2  + 22x +8 12x2 -12x2 + 41x -22x = 8 - 35 19x = -27 x = -2719 x = -2719

Page No 107:

Question 27:

Solve:
9x-73x+5=3x-4x+6

Answer:

9x - 73x + 5 = 3x - 4x + 6 (x+6) (9x-7) = (3x+5) (3x-4)                                (by cross multiplication) 9x2 - 7x + 54x - 42 = 9x2 - 12x + 15x - 20 9x2 + 47x - 42 = 9x2 + 3x - 20 9x2 - 9x2 + 47x - 3x = -20 + 42 44x = 22 x = 2244= 12 x = 12

Page No 107:

Question 28:

Solve:
2-7x1-5x=3+7x4+5x

Answer:

2 - 7x1 - 5x = 3 + 7x4 + 5x (4+5x)(2-7x) = (1-5x)(3+7x)             (by cross multiplication) 8 - 28x + 10x - 35x2 = 3 + 7x - 15x - 35x2 -35x2 - 18x +8 = -35x2 - 8x + 3 -35x2 + 35x2 -18x + 8x = -8 + 3 -10x = -5 x = -5-10= 12  x = 12



Page No 111:

Question 1:

Two numbers are in the ratio 8 : 3. If the sum of the numbers is 143, find the numbers.

Answer:

Let the numbers be 8x and 3x. 8x + 3x = 143           11x = 143            x= 14311            x =13 One number =8x = 8×13 = 104Other number = 3x = 3×13 = 39

Page No 111:

Question 2:

23 of a number is 20 less than the original number. Find the number.

Answer:

Let the original number be x.23 of the number is 20 less than the original number. 23x = x - 20            2x3 = x - 20            2x = 3 (x-20)       (by cross multiplication)            2x = 3x - 60            2x -3x = -60            -x = -60            x = 60Therefore, the original number is 60.   

Page No 111:

Question 3:

Four-fifths of a number is 10 more than two-thirds of the number. Find the number.

Answer:

Let the number be x.Four fifths of the number is 10 more than two thirds of the number. 45x = 10 + 23x          4x5 = 10 + 2x3          4x5= 30 + 2x3                  (L.C.M.of 1 and 3 is 3)          3 (4x) = 5 (30+2x)                  (by cross multiplication)          12x = 150 + 10x          12x - 10x = 150          2x = 150          x= 1502 = 75Therefore, the number is 75.    

Page No 111:

Question 4:

Twenty-four is divided into two parts such that 7 times the first part added to 5 times the second part makes 146. Find each part.

Answer:

Let one part be x.7 times the first part =  7xLet the other part be ( 24-x ).5 times the second part = 5 ( 24-x ) 7x + 5 ( 24 - x ) = 1467x + 120 - 5x = 146 7x - 5x = 146 - 120 2x = 26 x = 262= 13Therefore, one part is 13.Other part =(24 - x ) = ( 24 - 13 ) = 11

Page No 111:

Question 5:

Find the number whose fifth part increased by 5 is equal to its fourth part diminished by 5.

Answer:

Let the number be x.Fifth part increased by 5 = x 5+5Fourt part diminished by 5 =  x 4- 5 x5  + 5= x4 - 5 5 + 5 = x4-x510 = 5x - 4x20 10 = x20 200 = x x = 200Therefore, the number is 200.

Page No 111:

Question 6:

Three numbers are in the ratio of 4 : 5 : 6. If the sum of the largest and the smallest equals the sum of the third and 55, find the numbers.

Answer:

Let the common multiple for the given three numbers be x.Then, the three numbers would be 4x, 5x and 6x.4x + 6x = 5x + 5510x = 5x + 55 10x - 5x = 55 5x = 55 x = 555= 11 Smallest number = 4x = 4(11) = 44Largest number is = 6x = 6(11) = 66Third number  =5x = 5(11) = 55  Therefore, the three numbers are 44, 55 and 66.

Page No 111:

Question 7:

If 10 be added to four times a certain number, the result is 5 less than five times the number. Find the number.

Answer:

Let the number be x.10 + 4x = 5x -510 +5 = 5x -4x 15 = x x = 15   (by transposition)Therefore, the number is 15.

Page No 111:

Question 8:

Two numbers are such that the ratio between them is 3 : 5. If each is increased by 10, the ratio between the new numbers so formed is 5 : 7. Find the original numbers.

Answer:

Let us consider x as the common multiple of both the number.
Then, first number = 3x
Second number = 5x


 3x + 105x + 10 = 57 7(3x+10) = 5(5x+10)           (by cross multiplication) 21x + 70 = 25x + 50 21x - 25x = 50 - 70 -4x = -20 x = -20-4 = 5

Therefore, the common multiple of both the numbers is 5.
First number = 3x = 3×5 = 15
Second number = 5x = 5×5 = 25

Page No 111:

Question 9:

Find three consecutive odd numbers whose sum is 147.

Answer:

Let the first odd number be x.Let the second odd number be ( x+2 ).Let the third odd number be ( x+4 ).x + ( x+2 ) + ( x+4 ) = 147 x + x + 2 + x + 4 = 147 3x + 6 = 147 3x = 147 -6 3x = 141 x = 1413= 47Therefore, the first odd number is 47.Second odd number = ( x+2 ) = ( 47+2 ) = 49Third odd number = ( x+4 ) = ( 47+4 ) = 51

Page No 111:

Question 10:

Find three consecutive even numbers whose sum is 234.

Answer:

Let the first even number be x.Let the second even number be x+2.Let the third even number be x+4.x + x+2+x+4 = 234 x  +  x + 2 + x + 4 = 234 3x + 6 = 234 3x = 234 -6 3x = 228 x = 2283= 76First even number = x = 76Second even number =  x+2 =  76+2  = 78Third even number =  x+4= 80

Page No 111:

Question 11:

The sum of the digits of a two-digit number is 12. If the new number formed by reversing the digits is greater than the original number by 54, find the original number. Check your solution.

Answer:

Let the digit in the units place be x.Digit in the tens place = ( 12-x ) Original number = 10( 12 - x) + x = 120 - 9xOn reversing the digits, we have x at the tens place and ( 12-x ) at the units place.New number = 10x + 12 -x = 9x + 12New number - Original number = 54 9x + 12 - (120 - 9x) = 54 9x + 12 - 120 + 9x = 54 18x - 108 = 54 18x = 54+ 108 18x = 162 x = 16218 = 9Therefore, the digit in the units place is 9.Digit in tens place = ( 12-x ) = ( 12-9 ) = 3Therefore, the original number is 39.Check: The original number is 39.Sum of the digits in the original number = ( 3+9 ) = 12New number obtained on reversing the digits = 93New number - Original number = ( 93 - 39 ) = 54Thus, both the given conditions are satisfied by 39.Hence, the original number is 39.                 

Page No 111:

Question 12:

The digit in the tens place of a two-digit number is three times that in the units place. If the digits are reversed, the new number will be 36 less than the original number. Find the original number. Check your solution.

Answer:

Let the digit in the units place be x.Digit in the tens place =3xOriginal number = 10( 3x ) + x = 30x + xOn reversing the digits, we have x at the tens place and (3x) at the units place. New number = 10( x ) + 3x = 10x + 3xNew number = Original number - 36 10x + 3x = 30x + x - 36 13x = 31x - 36 36 = 31x - 13x 36 = 18x 18x = 36 x = 3618 = 2Therefore, the digit in the units place is 2.Digit in the tens place = ( 3x ) = 3×2 = 6Therefore, the original number is 62.Check:New number + 36 =Original Number                          26 + 36 = 62Hence, both the conditions are satisfied.Therefore, the original number is 62.



Page No 112:

Question 13:

The denominator of a rational number is greater than its numerator by 7. If the numerator is increased by 17 and the denominator decreased by 6, the new number becomes 2. Find the original number.

Answer:

Let the numerator be x.The denominator is greater than the numerator by 7. (x+7) x + 17(x + 7) - 6 = 2 x + 17x + 1 = 2 x + 17 = 2 (x + 1)                 (by cross multiplication)x + 17 = 2x + 2 x - 2x = 2 - 17 -x = -15 x= 15Therefore, the numerator is 15.Denominator = ( x+7 ) = ( 15+7 ) = 22 Original number = 1522

Page No 112:

Question 14:

In a fraction, twice the numerator is 2 more than the denominator. If 3 is added to the numerator and to the denominator, the new fraction is 23. Find the original fraction.

Answer:

Denominator, d= xIt is given that twice the numerator is equal to two more than the denominator. Twice of numerator, 2n = x + 2 Numerator, n = x + 22 n + 3d + 3 = 23 3 (n + 3) = 2 (d + 3)                 (by cross multiplication) 3n + 9 = 2d + 6 3n - 2d = 6 - 9 3n - 2d = -3On replace d by x and n by x + 22: 3 ( x + 22) - 2 x = -33x + 6 - 4x2 = -3               (taking the L.C.M. of 2 and 1 as 2) 6 - x = -6                               (by cross multipliction) -x = -6 -6 x= 12The denominator is 12. Numerator = x + 22= 12 + 22= 142 = 7 Original fraction = 712

Page No 112:

Question 15:

The length of a rectangle exceeds its breadth by 7 cm. If the length is decreased by 4 cm and the breadth is increased by 3 cm, the area of the new rectangle is the same as the area of the original rectangle. Find the length and the breadth of the original rectangle.

Answer:

Let the breadth of the original rectangle be x cm.Then, its length will be (x+ 7) cm.The area of the rectangle will be (x)(x + 7) cm2.(x + 3)(x + 7 - 4) = (x)(x + 7)(x + 3 )(x + 3) =  x2 + 7x x2  + 3x + 3x + 9 = x2 + 7x x2 + 6x + 9 = x2 + 7x 9 = x2 - x2 + 7x - 6x 9 = x x = 9                  (by transposition)Breadth of the original rectangle = 9 cmLength of the original rectangle  = ( x+ 7 ) = ( 9 + 7 ) = 16 cm

Page No 112:

Question 16:

The width of a rectangle is two-thirds its length. If the perimeter is 180 metres, find the dimensions of the rectangle.

Answer:

Let the width of the rectangle be x cm.It is 23 of the length of the rectangle.This means that the length of the rectangle will be 32 x.Perimeter of the rectangle = 2(x) + 2(32)x = 180 m 2x + 6x2 = 180 4x + 6x2 = 180         (taking the L.C.M. of 1 on the L.H.S. of the equation) 10x = 2 × 180           (by cross multiplication) 10x = 360 x = 36010= 36Therefore, the width of the rectangle is 36 m.Length of the rectangle will be = 32x = 32( 36 )= 54 m

Page No 112:

Question 17:

An altitude of a triangle is five-thirds thelength of its corresponding base. If the altitude be increased by 4 cm and the base decreased by 2 cm, the area of the triangle remains the same. Find the base and the altitude of the triangle.

Answer:

Let the length of the base of the triangle be x cm.Then, its altitude will be 53x cm.Area of the triangle = 12(x)(53x) = 56x2 12(x -2) (53x + 4) = 56x2(x - 22) (5x + 123) = 5x26(x -2) (5x + 12)6 = 5x26 5x2 + 12x - 10x - 246 = 5x26  5x2 + 2x - 24 = 5x2                             (cancelling the denominators from both the sides since they are same) 5x2 - 5x2 +2x = 24 2x = 24 x = 242 =12 mTherefore, the base of the triangle is 12 m.Altitude of the triangle = 53x =53(12) = 20 m

Page No 112:

Question 18:

Two angles of a triangle are in the ratio 4 : 5. If the sum of these angles is equal to the third angle, find the angles of the triangle.

Answer:

Let the common multiple of all the three angles be x.Then, the first angle will be 4x.And the second angle will be 5x.In a triangle, sum of all the three angles will be equal to 180°. Third angle = 180 - ( 4x + 5x )= 180 - 9x 4x + 5x = 180 - 9x 9x = 180 - 9x 9x + 9x = 180 18x = 180 x = 18018= 10First angle = 4x = 4×10 = 40°Second angle = 5x = 5×10 = 50°Third angle = 4x + 5x = 9x = 9× 10 =90°

Page No 112:

Question 19:

A steamer goes downstream from one port to another in 9 hours. It covers the same distance upstream in 10 hours. If the speed of the stream be 1 km/h, find the speed of the steamer in still water and the distance between the ports.

Answer:

Let the speed of the steamer in still water be x km/h.Speed (downstream)  = ( x+ 1 ) km/hSpeed (upstream) = ( x- 1) km/hDistance covered in 9 hours while going downstream = 9( x+1 ) kmDistance covered in 10 hours while going upstream = 10( x-1 ) kmBut both of these distances will be same.9 (x + 1) = 10 (x - 1) 9x + 9 = 10x - 10 9 + 10 = 10x - 9x 19 = x x = 19Therefore, the speed of the steamer in still water is 19 km/h.Distance between the ports = 9(x+1) = 9(19+1) = 9 × 20 = 180 km

Page No 112:

Question 20:

The distance between two stations is 300 km. Two motorcyclists start simultaneously from these stations and move towards each other. The speed of one of them is 7 km/h more than that of the other. If the distance between them after 2 hours of their start is 34 km, find the speed of each motorcyclist. Check your solution.

Answer:

Let the speed of one motorcyclist be x km/h.So, the speed of the other motorcyclist will be ( x+7 ) km/h.Distance travelled by the first motorcyclist in 2 hours = 2x kmDistance travelled by the second motorcyclist in 2 hours = 2 ( x+7 ) kmTherefore,300 - ( 2x + (2x +14) ) = 34 300 - ( 2x + 2x + 14 ) = 34 300 -4x - 14 = 34 286 - 4x = 34 286 - 34 = 4x 252 = 4x x= 2524 = 63Therefore, the speed of the first motorcyclist is 63 km/h.The speed of the second motorcyclist is ( x+7 ) = ( 63+7 ) = 70 km/h.Check:The distance covered by the first motorcyclist in 2 hours = 63 ×2 = 126 kmThe distance covered by the second motorcyclist in 2 hours = 70 ×2  = 140 kmThe distance between the motorcyclists after 2 hours = 300 - ( 126 + 140 ) = 34 km (which is the same as given)Therefore, the speeds of the motorcyclists are 63 km/h and 70 km/h, respectively.

Page No 112:

Question 21:

Divide 150 into three parts such that the second number is five-sixths the first and the third number is four-fifths the second.

Answer:

Let the first number be x.Then, the second number will be 56x.Third number = 45(56x) = 23xx + 5x6 +  2x3 = 150 6x + 5x + 4x 6 = 150         (multiplying the L.H.S. by 6, which is the L.C.M. of 1, 6 and 3) 15x = 150 × 6             (by cross multiplication) 15x = 900 x = 90015 = 60Therefore, the first number is 60.Second number = 56x = 56 (60) = 50Third number =  23x = 23 (60) = 40

Page No 112:

Question 22:

Divide 4500 into two parts such that 5% of the first part is equal to 10% of the second part.

Answer:

Let the first part be x.Let the second part be (4500 - x).5% of x = 10% of (4500-x) (5100)x = (10100) (4500 -x) 5x100= 45000 - 10x100  5x = 45000 - 10x      (by cancellation of same denominators from both the sides)   5x + 10x = 45000 15x = 45000 x= 4500015 = 3000 Therefore, the first part is 3000. Second part = ( 4500 - x ) = ( 4500 - 3000 ) = 1500

Page No 112:

Question 23:

Rakhi's mother is four times as old as Rakhi. After 5 years, her mother will be three times as old as she will be then. Find their present ages.

Answer:

Let the present age of Rakhi be x.Then, the present age of Rakhi's mother will be  4x.After five years, Rakhi's age will be (x + 5).After five years, her mother's age will be (4x + 5).4x + 5 = 3 ( x + 5 )4x + 5 = 3x + 15 4x - 3x = 15 - 5 x = 10Present age of Rakhi= 10 yearsPresent age of Rakhi's mother= 4(x) = 4×10 =40 years

Page No 112:

Question 24:

Monu's father is 26 years younger than Monu's grandfather and 29 years older than Monu. The sum of the ages of all the three is 135 years. What is the age of each one of them?

Answer:

Let the age of Monu's father be x years.The age of Monu's grandfather will be ( x+26 ).Then, the age of Monu will be ( x-29 ).x + ( x+26 ) + ( x-29 ) = 135 x + x + 26 + x - 29 = 135 3x -3 = 135 3x = 135 + 3 3x = 138 x = 1383 =46Age of Monu's father = 46 yearsAge of Monu's grandfather = ( x+26 ) = ( 46+26 ) =72 yearsAge of Monu= ( x-29 ) = 46 - 29 = 17 years

Page No 112:

Question 25:

A man is 10 times older than his grandson. He is also 54 years older than him. Find their present ages.

Answer:

Let the age of the grandson be x years.Then, his grandfather's age will be 10x.Also, the grandfather is 54 years older than his grandson. Age of the grandson = x + 5410x = x + 5410x - x = 54 9x = 54 x = 549= 6Therefore, the grandson's age is 6 years.Grandfather's age = 10(x) = 10×6 = 60 years

Page No 112:

Question 26:

The difference between the ages of two cousins is 10 years. 15 years ago, if the elder one was twice as old as the younger one, find their present ages.

Answer:

Let the age of the younger cousin be x.Then, the age of the elder cousin will be (x+10).15 years ago:Age of the younger cousin = ( x-15 )Age of elder cousin = ( x + 10 - 15)                                = ( x - 5 ) ( x - 5 ) = 2 ( x - 15 ) x - 5 = 2x - 30 x - 2x = -30 + 5 -x = -25 x = 25Therefore, the present age of the younger cousin is 25 years.Present age of elder cousin = ( x + 10 ) = ( 25 + 10 ) = 35 years

Page No 112:

Question 27:

Half of a herd of deer are grazing in the field and three-fourths of the remaining are playing nearby. The rest 9 are drinking water from the pond. Find thenumber of deer in the herd.

Answer:

Let the number of deer in the herd be x.The number of deer grazing in the field is (12)x.Remaining deer = x - x2 = x2Number of deer playing nearby = 34(x2) = 38x The number of deer drinking water from the pond is 9. 9 +38x + 12x = x72 + 3x + 4x8 = x                 (multiplying the L.H.S. by 8, which is the L.C.M. of 1, 8 and 2) 72 + 7x = 8x                        (by cross multiplication)  72 = 8x - 7x 72 = x x = 72 Total number of deer in the herd = 72



Page No 113:

Question 1:

Tick (✓) the correct answer:
If 2x − 3 = x + 2, then x = ?
(a) 1
(b) 3
(c) 5
(d) 7

Answer:

(c) 5

2x - 3 = x + 2 2x - x  = 3 + 2 x = 5

Page No 113:

Question 2:

Tick (✓) the correct answer:
If 5x+71=32x-14, then x = ?
(a) 5
(b) −5
(c) 6
(d) −6

Answer:

(b) -55x + 72 = 32x - 1410x + 72 = 3x - 282 10x + 7  = 3x - 28 10x - 3x = -28 - 7 7x = -35 x = -357 = -5

Page No 113:

Question 3:

Tick (✓) the correct answer:
If z=45(z+10), then z = ?
(a) 40
(b) 20
(c) 10
(d) 60

Answer:

(a) 40

z = 45 ( z + 10 ) 5z = 4 ( z + 10 ) 5z = 4z + 40 5z - 4z = 40 z = 40

Page No 113:

Question 4:

Tick (✓) the correct answer:
If 3m = 5m-85, then m = ?
(a) 25
(b) 35
(c) 45
(d) 15

Answer:

(c) 45

3m = 5m - 853m = 25m - 85 15m = 25m - 8 15m - 25m =-8 -10m = -8m = -8-10= 45

Page No 113:

Question 5:

Tick (✓) the correct answer:
If 5t − 3 = 3t − 5, then t = ?
(a) 1
(b) −1
(c) 2
(d) −2

Answer:

(b) -1

5t - 3 = 3t - 55t - 3t = 3 - 52t = -2t = -22 = -1

Page No 113:

Question 6:

Tick (✓) the correct answer:
If 2y+53=263-y, then y = ?
(a) 1
(b) 23
(c) 65
(d) 73

Answer:

(d) 73

2y + 53 = 263 - y6y + 53 = 26 - 3y36y + 5 = 26 - 3y6y + 3y = 26 - 59y = 21y = 219= 73

Page No 113:

Question 7:

Tick (✓) the correct answer:
If 6x+13+1=x-36, then x = ?
(a) 1
(b) −1
(c) 3
(d) −3

Answer:

(b) -1

6x + 1 3 + 1 = x - 36 6x + 1 + 33 = x - 36 6 ( 6x + 4) = 3 ( x - 3 ) 36x + 24 = 3x - 9 36x - 3x = -24 -9 33x = -33 x =-3333= -1

Page No 113:

Question 8:

Tick (✓) the correct answer:
If n2-3n4+5n6=21, then n = ?
(a) 30
(b) 42
(c) 36
(d) 28

Answer:

(c) 36

n2 - 3n4 + 5n6 = 21 6n - 9n + 10n12= 21 7n = 21×12 7n = 252 n = 2527 = 36

Page No 113:

Question 9:

Tick (✓) the correct answer:
If x+12x+3=38, then x = ?
(a) 14
(b) 13
(c) 16
(d) 12

Answer:

(d) 12

x + 12x + 3= 388 ( x + 1 ) = 3 ( 2x + 3 )8x + 8 = 6x + 98x - 6x = 9 - 82x = 1x = 12

Page No 113:

Question 10:

Tick (✓) the correct answer:
If 4x+85x+8=56, then x = ?
(a) 4
(b) 6
(c) 8
(d) 12

Answer:

(c) 8

4x + 85x + 8 = 56 6 ( 4x + 8 ) = 5 ( 5x + 8 ) 24x + 48 = 25x + 40 24x -25x = -48 + 40 -x = -8 x = 8

Page No 113:

Question 11:

Tick (✓) the correct answer:
If nn+15=49, then n = ?
(a) 4
(b) 6
(c) 9
(d) 12

Answer:

(d) 12

nn + 15 = 49 9n = 4 ( n + 15 ) 9n = 4n + 60 9n - 4n = 60 5n = 60 n = 605 = 12

Page No 113:

Question 12:

Tick (✓) the correct answer:
If 3(t − 3) = 5(2t + 1), then t = ?
(a) −2
(b) 2
(c) −3
(d) 3

Answer:

(a) -2

3 ( t - 3 ) = 5 ( 2t + 1 ) 3t - 9 = 10t + 5 3t - 10t = 9 + 5 -7t = 14 -t = 147=2 t = -2

Page No 113:

Question 13:

Tick (✓) the correct answer:
Four-fifths of a number is greater than three-fourths of the number by 4. The number is
(a) 12
(b) 64
(c) 80
(d) 102

Answer:

(c) 80

Let the number be x. 45x = 34x + 4 4x5 = 3x + 164 16x = 15x + 80 16x - 15x = 80 x = 80



Page No 114:

Question 14:

Tick (✓) the correct answer:
The ages of A and B are in the ratio 5 : 7. Four years from now the ratio of their ages will be 3 : 4. The present age of B is
(a) 20 years
(b) 28 years
(c) 15 years
(d) 21 years

Answer:

(b) 28 years

Let x be the common multiple of the ages of A and B.Then. the ages of A and B would be 5x and 7x, respectively. 5x + 47x + 4 = 344 ( 5x +4 ) = 3 ( 7x + 4 )20x + 16 = 21x + 1216 - 12 = 21x - 20x4 = xx = 4  Age of B = 7(x) = 7×4                   = 28 years

Page No 114:

Question 15:

Tick (✓) the correct answer:
The base of an isosceles triangle is 6 cm and its perimeter is 16 cm. Length of each of the equal sides is
(a) 4 cm
(b) 5 cm
(c) 3 cm
(d) 6 cm

Answer:

(b) 5 cm

Let the equal side of the isosceles triangle be x.Then, the perimeter of the triangle would be (x + x + 6). 2x +6 = 16 2x = 16 - 62x = 10x = 102= 5 Length of each equal side = 5 cm

Page No 114:

Question 16:

Tick (✓) the correct answer:
Sum of three consecutive integers is 51. The middle one is
(a) 14
(b) 15
(c) 16
(d) 17

Answer:

(d) 17

Let the three consecutive integers be x, x+1 and x+2.Equation = x + x + 1 + x + 2 = 513x + 3 = 513x = 51 - 33x = 48x = 483= 16Middle integer = x+1 = 16 + 1 = 17

Page No 114:

Question 17:

Tick (✓) the correct answer:
The sum of two numbers is 95. If one exceeds the other by 15, then the smaller of the two is
(a) 40
(b) 35
(c) 45
(d) 55

Answer:

(a) 40

Let the numbers be x and x + 15. x + x+ 15 = 952x +15 = 952x = 95 - 152x = 80x = 40The smaller number is 40.

Page No 114:

Question 18:

Tick (✓) the correct answer:
Number of boys and girls in a class are in the ratio 7 : 5. The number of boys is 8 more than the number of girls. The total class strength is
(a) 56
(b) 52
(c) 48
(d) 36

Answer:

(c) 48

Let the number of boys in the class be x.Then, the number of girls will be (x-8).The equation becomes:xx-8= 75 5x = 7x - 56 5x -7x = -56 -2x = -56 x = - 56- 2 = 28Therefore, the number of boys is 28.Number of girls= ( x- 8) = 28 -8 =20Total strength of the class = 28 + 20 = 48



Page No 115:

Question 1:

Subtract 4a2 + 5b2 − 6c2 + 8 from 2a2 − 3b2 − 4c2 − 5.

Answer:

2a2 - 3b2 -4c2 -5 -( 4a2 +5b2 -6c2 +8)= 2a2 - 3b2 -4c2 -5 -4a2 -5b2 + 6c2 -8= 2a2 -4a2 - 3b2 -5b2-4c2 +6c2-5 -8= -2a2-8b2+2c2-13

Page No 115:

Question 2:

Find each of the following products:
(i) (4a + 5b) × (5a − 6b)
(ii) (6x2 − x + 8) × (x2 − 3)

Answer:

(i) 4a + 5b×5a - 6b= 20a2 - 24ab +25ab - 30b2= 20a2 +ab - 30b2(ii) 6x2 -x +8×x2 -3= 6x4  - 18x2  -x3 +3x +8x2 - 24= 6x4  -x3 - 18x2 +8x2 +3x- 24= 6x4  -x3 - 10x2 +3x- 24

Page No 115:

Question 3:

Divide (5a3 − 4a2 + 3a + 18) by (a2 − 2a + 3).

Answer:



Therefore, 5a + 6 is the quotient.

Page No 115:

Question 4:

If x-1x=4, find the value of
(i) x2+1x2.
(ii) x4+1x4.

Answer:

(i)Given, x-1x = 4Squaring both the sides: x-1x2 = 42 x2 - 2×x×1x +1x2 = 16 x2 -2 + 1x2 = 16  x2  + 1x2 = 16+2 x2  + 1x2 = 182 + 2  42 + 2  16 + 2  18

(ii) From the first part: x2 + 1x2  = 18Squaring both the sides:x2 + 1x2 2 = 182 x2  2 +2×x2 ×1x2  + 1x2 2 = 324x4 + 2 + 1x4  = 324x4+ 1x4 = 324 - 2  x4+ 1x4  = 322

Page No 115:

Question 5:

Evaluate {(83)2 − (17)2}.

Answer:

   832 - 172= 83 + 1783 - 17      [according to the formula a2 -b2 = a + ba -b]= 10066= 6600

Page No 115:

Question 6:

Factorise:
(i) x3 − 3x2 + x − 3
(ii) 63x2y2 − 7
(iii) 1 − 6x + 9x2
(iv) 7x2 − 19x − 6

Answer:

i x3 - 3x2 + x - 3= x2x-3+1x-3= x2+1x-3ii 63x2y2 - 7= 7 9x2y2  - 1= 7(3xy)2 - (1)2                   according to the formula  a2-b2 =a+ba -b= 73xy + 13xy - 1 iii 1-6x+9x2= 9x2- 6x + 1= 9x2 - 3x - 3x + 1= 3x3x-1-13x-1= 3x-13x-1= 3x-12(iv) 7x2− 19x − 6= 7x2-21x+2x-6= 7xx-3+2x-3= 7x+2x-3

Page No 115:

Question 7:

Solve: 2x+73x+5=1517.

Answer:

2x + 73x + 5 = 1517 17 ( 2x + 7 ) = 15 ( 3x + 5 ) 34x + 119 = 45x + 75 119 - 75 = 45x - 34x 44 = 11x x = 4411=4  x = 4

Page No 115:

Question 8:

5 years ago a man was 7 times as old as his son. After 5 years he will be thrice as old as his son. Find their present ages.

Answer:

Let the present age of the son be x years and that of the father be f years.5 years back, the father was 7 times as old as his son.  f-5= 7x-5f = 7x - 35 +5f = 7x - 30            ... (1)After 5 years,  ages of the father and son will be f+5 and x+5, respectively.After 5 years, the father will be three times older than his son. f+5 =3 x+57x -30 +5 = 3x + 15               [inserting the value of f from equation 1]7x -25 = 3x + 157x - 3x = 25 +154x = 40x = 404= 10Therefore, the present age of the son is 10 years.Father's present age = ( 7x - 30) = 7(10)-30                                 = 70 -30 = 40 years   

Page No 115:

Question 9:

Mark (✓) against the correct answer:
ab
ab + 1 = ?
(a) (1 − a)(1 − b)
(b) (1 − a)(b − 1)
(c) (a − 1)(b − 1)
(d) (a − 1)(1 − b)

Answer:

(c) (a-1)(b-1)

ab-a-b+1=ab-1-1b-1=a-1b-1

Page No 115:

Question 10:

Mark (✓) against the correct answer:
3 + 23x − 8x2 = ?
(a) (1 − 8x)(3 + x)
(b) (1 + 8x)(3 − x)
(c) (1 − 8x)(3 − x)
(d) none of these

Answer:

(b) 1 + 8x3 -x

         3+23x-8x2= 3+24x-x-8x2= 31+8x-x1+8x= 1+8x3-x

Page No 115:

Question 11:

Mark (✓) against the correct answer:
7x2 − 19x − 6 = ?
(a) (x − 3)(7x + 2)
(b) (x + 3)(7x − 2)
(c) (x − 3)(7x − 2)
(d) (7x − 3)(x + 2)

Answer:

(a) x -37x + 2
      
    7x2-19x-6=7x2-21x+2x-6=7xx-3+2x-3=x-37x+2

Page No 115:

Question 12:

Mark (✓) against the correct answer:
12x2 + 60x + 75 = ?
(a) (2x + 5)(6x + 5)
(b) (3x + 5)2
(c) 3(2x + 5)2
(d) none of these

Answer:

(c) 32x +52

 12x2+60x+75=34x2+20x+25=32x2 + 2×2x×5 +52=32x+52

Page No 115:

Question 13:

Mark (✓) against the correct answer:
10p2 + 11p + 3 = ?
(a) (2p + 3)(5p + 1)
(b) (5p + 3)(2p + 1)
(c) (5p − 3)(2p − 1)
(d) none of these

Answer:

(b) 5p + 32p + 1
      
      10p2+11p+3=10p2+5p+6p+3=5p2p+1+32p+1=5p+32p+1

Page No 115:

Question 14:

Mark (✓) against the correct answer:
8x3 − 2x = ?
(a) (4x − 1)(2x − 1)x
(b) (2x2 + 1)(2x − 1)
(c) 2x(2x − 1)(2x + 1)
(d) none of these

Answer:

(c) 2x2x -12x +1

  8x3-2x=2x4x2-1=2x2x2-12=2x2x-12x+1

Page No 115:

Question 15:

Mark (✓) against the correct answer:
x+52+x-53=256 gives
(a) x = 3
(b) x = 4
(c) x = 5
(d) x = 2

Answer:

(b) x = 4


x+52+x-53=256 3x+5+2x-56 = 256          because L.C.M. of 2 & 3 is 6 3x+15+2x-106 = 256 5x+56=256 5x+5=25                             cancelling 6 from the denominator on both the sides 5x=25-5 5x=20 x=205 x=4

Page No 115:

Question 16:

Fill in the blanks.
(i) x2 − 18x + 81 = (......)
(ii) 4 − 36x2 = (......)(......)(......)
(iii) x2 − 14x + 13 = (......)(......)
(iv) 9z2x2 − 4y2 + 4xy = (......)(......)
(v) abcabc + 1 = (......)(......)

Answer:

(i) x -92

       x2-18x+81= x2 - 2×x×9 + 92= x-92


(ii) 41-3x1+3x

          4-36x2= 41-9x2= 412 - 3x2= 41-3x1+3x


(iii) x-13x-1

         x2-14x+13  =x2-13x-x+13  =xx-13-1x-13  =x-13 x-1


(iv) 3z+x-2y3z-x+2y

     9z2-x2-4y2+4xy  = 9z2-x2 - 4xy + 4y2  = 9z2-x2 - 2×x×2y +2y2  = 9z2-x-2y2  = 3z2-x-2y2    = 3z+x-2y3z-x-2y  = 3z+x-2y3z-x+2y


(v) c-1ab-1

   abc-ab-c+1   = abc-1-1c-1   =c-1ab-1



Page No 116:

Question 17:

Write 'T' for true and 'F' for false for each of the following:
(i) (5 − 3x2) is a binomial.
(ii) −8 is a monomial.
(iii) (5a − 9b) − (−6a + 2b) = (−a − 7b).
(iv) When x = 2 and y = 1, the value of -87x3y4 is -647.
(v) x4+x6-x2=34x=-9.
(vi) 2x-5=0x=25.

Answer:

(i) T
Binomial expression is an expression that shows the sum or the difference of two unlike terms. The above expression has two unlike terms, i.e. 5 and 3x2.

(ii) T
Any expression that contains only one term is called a monomial. It can either be a constant or a variable.

(iii) F

L.H.S. = 5a -9b- -6a + 2b= 5a -9b +6a-2b = -a-7b= 5a +6a -9b-2b = -a-7b= 11a - 11b This is not equal to -a-7b.Thus, the L.H.S. is not equal to the R.H.S.

(iv) T

-87x3y4 Given: x=2  y = 1Given expression  = -872314                                     = -87×8×1                                     = -647

(v) T

 x4+x6-x2=34 3x + 2x - 6x12= 34 -x12= 34 -4x = 36 x = -364 x = -9

(vi) F

  2x - 5 = 0 2x = 5  x = 52



View NCERT Solutions for all chapters of Class 8