RS Aggarwal 2021 2022 Solutions for Class 10 Maths Chapter 4 Quadratic Equations are provided here with simple step-by-step explanations. These solutions for Quadratic Equations are extremely popular among class 10 students for Maths Quadratic Equations Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the RS Aggarwal 2021 2022 Book of class 10 Maths Chapter 4 are provided here for you for free. You will also love the ad-free experience on Meritnation’s RS Aggarwal 2021 2022 Solutions. All RS Aggarwal 2021 2022 Solutions for class 10 Maths are prepared by experts and are 100% accurate.

Page No 182:

Question 1:

Answer:

i) (x2  x + 3) is a quadratic polynomial. x2  x + 3 = 0 is a quadratic equation.ii) Clearly, (2x2 + 52x  3) is a quadratic polynomial. 2x2 + 52x  3 = 0 is a quadratic equation.iii) Clearly, (2x2 + 7x + 52) is a quadratic polynomial. 2x2 + 7x + 52 = 0 is a quadratic equation.iv) Clearly, (13x2 + 15x  2) is a quadratic polynomial. 13x2 + 15x  2 = 0 is a quadratic equation.v) (x2  3x  x + 4) contains a term with x, i.e, x12, where 12 is not a integer. Therefore, it is not a quadratic polynomial. x2  3x  x + 4 = 0 is not a quadratic equation.vi) x  6x = 3 x2  6 = 3x x2  3x  6 = 0(x23x6) is a quadratic polynomial; therefore, the givenequation is quadratic. vii) x + 2x = x2 x2 + 2 = x3 x3  x2  2 = 0(x3  x2  2) is  not a quadratic polynomial. x3  x2  2 = 0 is not a quadratic equation.viii) x2  1x2 = 5 x4  1 = 5x2 x4  5x2  1 = 0(x4  5x2  1) is a polynomial with degree 4. x4  5x2  1 = 0 is not a quadratic equation.
(ix) x+23=x3-8
x3+6x2+12x+8=x3-86x2+12x+16=0
This is of the form ax2 + bx + c = 0.
Hence, the given equation is a quadratic equation.
(x) 2x+33x+2=6x-1x-2
6x2+4x+9x+6=6x2-3x+26x2+13x+6=6x2-18x+1231x-6=0
This is not of the form ax2 + bx + c = 0.
Hence, the given equation is not a quadratic equation.
(xi) x+1x2=2x+1x+3
x2+1x2=2x2+1x+3x2+12=2xx2+1+3x2x4+2x2+1=2x3+2x+3x2x4-2x3-x2-2x+1=0
This is not of the form ax2 + bx + c = 0.
Hence, the given equation is not a quadratic equation.

Page No 182:

Question 2:

i) (x2  x + 3) is a quadratic polynomial. x2  x + 3 = 0 is a quadratic equation.ii) Clearly, (2x2 + 52x  3) is a quadratic polynomial. 2x2 + 52x  3 = 0 is a quadratic equation.iii) Clearly, (2x2 + 7x + 52) is a quadratic polynomial. 2x2 + 7x + 52 = 0 is a quadratic equation.iv) Clearly, (13x2 + 15x  2) is a quadratic polynomial. 13x2 + 15x  2 = 0 is a quadratic equation.v) (x2  3x  x + 4) contains a term with x, i.e, x12, where 12 is not a integer. Therefore, it is not a quadratic polynomial. x2  3x  x + 4 = 0 is not a quadratic equation.vi) x  6x = 3 x2  6 = 3x x2  3x  6 = 0(x23x6) is a quadratic polynomial; therefore, the givenequation is quadratic. vii) x + 2x = x2 x2 + 2 = x3 x3  x2  2 = 0(x3  x2  2) is  not a quadratic polynomial. x3  x2  2 = 0 is not a quadratic equation.viii) x2  1x2 = 5 x4  1 = 5x2 x4  5x2  1 = 0(x4  5x2  1) is a polynomial with degree 4. x4  5x2  1 = 0 is not a quadratic equation.
(ix) x+23=x3-8
x3+6x2+12x+8=x3-86x2+12x+16=0
This is of the form ax2 + bx + c = 0.
Hence, the given equation is a quadratic equation.
(x) 2x+33x+2=6x-1x-2
6x2+4x+9x+6=6x2-3x+26x2+13x+6=6x2-18x+1231x-6=0
This is not of the form ax2 + bx + c = 0.
Hence, the given equation is not a quadratic equation.
(xi) x+1x2=2x+1x+3
x2+1x2=2x2+1x+3x2+12=2xx2+1+3x2x4+2x2+1=2x3+2x+3x2x4-2x3-x2-2x+1=0
This is not of the form ax2 + bx + c = 0.
Hence, the given equation is not a quadratic equation.

Answer:

The given equation is (3x2 + 2x  1 = 0).(i) x = (1) L.H.S. = x2 + 2x  1= 3 × (1)2 + 2 × (1)  1= 3  2  1= 0= R.H.S.Thus, (1) is a root of (3x2 + 2x  1 = 0).(ii) On substituting x = 13 in the given equation, we get:L.H.S. = 3x2 + 2x  1  = 3 × 132 + 2 × 13  1 = 3 1× 193+ 23  1= 1 + 2  33 = 03= 0= R.H.S.Thus,  13 is a root of (3x2 + 2x  1 = 0).(iii) On substituting x = 12 in the given equation, we get:L.H.S. = 3x2 + 2x  1  = 3 × 122 + 21 × 121  1 = 3 × 14 1 1= 34  2= 3  84= 54  0Thus, L.H.S.= R.H.S.Hence, 12 is a not solution of  (3x2 + 2x  1= 0).

Page No 182:

Question 3:

The given equation is (3x2 + 2x  1 = 0).(i) x = (1) L.H.S. = x2 + 2x  1= 3 × (1)2 + 2 × (1)  1= 3  2  1= 0= R.H.S.Thus, (1) is a root of (3x2 + 2x  1 = 0).(ii) On substituting x = 13 in the given equation, we get:L.H.S. = 3x2 + 2x  1  = 3 × 132 + 2 × 13  1 = 3 1× 193+ 23  1= 1 + 2  33 = 03= 0= R.H.S.Thus,  13 is a root of (3x2 + 2x  1 = 0).(iii) On substituting x = 12 in the given equation, we get:L.H.S. = 3x2 + 2x  1  = 3 × 122 + 21 × 121  1 = 3 × 14 1 1= 34  2= 3  84= 54  0Thus, L.H.S.= R.H.S.Hence, 12 is a not solution of  (3x2 + 2x  1= 0).

Answer:

(i)
It is given that (x=1) is a root of (x2 + kx + 3 = 0). Therefore, (x=1) must satisfy the equation. (1)2 + k × 1 + 3 = 0  k + 4 = 0  k = 4Hence, the required value of k is 4.
So, the equation becomes x2-4x+3=0
On factorising we get;
x2-x-3x+3=0x(x-1)-3(x-1)=0(x-1)(x-3)=0x-1=0 or x-3=0x=1 or x=3
Hence, the other root is 3.

(ii)
It is given that 34 is a root of ax2 + bx  6 = 0; therefore, we have:a × (34)2 + b × 34 6 = 0 9a16 + 3b4 = 6 9a + 12b16 = 6 9a + 12b  96 = 0 3a + 4b = 32        ...(i) Again, (2) is a root of ax2 + bx  6 = 0; therefore, we have:a×(2)2 + b×(2)  6 = 0 4a  2b = 6 2a  b = 3        ...(ii)On multiplying (ii) by 4 and adding the result with (i), we get: 3a + 4b + 8a  4b = 32 + 12 11a = 44 a = 4Putting the value of a in  (ii), we get:2×4  b = 3  b = 3 b = 5Hence, the required values of a and b are 4 and 5, respectively.



 

Page No 182:

Question 4:

(i)
It is given that (x=1) is a root of (x2 + kx + 3 = 0). Therefore, (x=1) must satisfy the equation. (1)2 + k × 1 + 3 = 0  k + 4 = 0  k = 4Hence, the required value of k is 4.
So, the equation becomes x2-4x+3=0
On factorising we get;
x2-x-3x+3=0x(x-1)-3(x-1)=0(x-1)(x-3)=0x-1=0 or x-3=0x=1 or x=3
Hence, the other root is 3.

(ii)
It is given that 34 is a root of ax2 + bx  6 = 0; therefore, we have:a × (34)2 + b × 34 6 = 0 9a16 + 3b4 = 6 9a + 12b16 = 6 9a + 12b  96 = 0 3a + 4b = 32        ...(i) Again, (2) is a root of ax2 + bx  6 = 0; therefore, we have:a×(2)2 + b×(2)  6 = 0 4a  2b = 6 2a  b = 3        ...(ii)On multiplying (ii) by 4 and adding the result with (i), we get: 3a + 4b + 8a  4b = 32 + 12 11a = 44 a = 4Putting the value of a in  (ii), we get:2×4  b = 3  b = 3 b = 5Hence, the required values of a and b are 4 and 5, respectively.



 

Answer:

LHS;
Consider the quadratic equation;
ad2axb+2cdx+bc2=0
Put x=-bcad in the given equation.
ad2a-bcadb+2cd-bcad+bc2=ad2bdad-bcad+2bc-bcad+bc2=ad2bd-bc+2bc-bcad+bc2=ad2bd(bc)-bcad+bc2=-ab2c2d2abd2+bc2=-bc2+bc2=0=RHS
Hence, x=-bcad is a solution to the given quadratic equation.

Page No 182:

Question 5:

LHS;
Consider the quadratic equation;
ad2axb+2cdx+bc2=0
Put x=-bcad in the given equation.
ad2a-bcadb+2cd-bcad+bc2=ad2bdad-bcad+2bc-bcad+bc2=ad2bd-bc+2bc-bcad+bc2=ad2bd(bc)-bcad+bc2=-ab2c2d2abd2+bc2=-bc2+bc2=0=RHS
Hence, x=-bcad is a solution to the given quadratic equation.

Answer:

(2x − 3)(3x + 1) = 0

⇒ 2x − 3 = 0 or 3x + 1 = 0

⇒ 2x = 3 or 3x = −1

x32 or x = -13

Hence, the roots of the given equation are 32 and -13.

Page No 182:

Question 6:

(2x − 3)(3x + 1) = 0

⇒ 2x − 3 = 0 or 3x + 1 = 0

⇒ 2x = 3 or 3x = −1

x32 or x = -13

Hence, the roots of the given equation are 32 and -13.

Answer:

4x2 + 5x = 0

x(4x + 5) = 0

x = 0 or 4x + 5 = 0

x = 0 or x = -54

Hence, the roots of the given equation are 0 and -54.

Page No 182:

Question 7:

4x2 + 5x = 0

x(4x + 5) = 0

x = 0 or 4x + 5 = 0

x = 0 or x = -54

Hence, the roots of the given equation are 0 and -54.

Answer:

Given:3x2  243 = 0 3(x2  81) = 0 (x)2  (9)2 = 0 (x + 9)(x  9) = 0 x + 9 = 0 or x  9 = 0 x = 9 or  x= 9Hence,9 and 9 are the roots of the equation 3x2243=0.

Page No 182:

Question 8:

Given:3x2  243 = 0 3(x2  81) = 0 (x)2  (9)2 = 0 (x + 9)(x  9) = 0 x + 9 = 0 or x  9 = 0 x = 9 or  x= 9Hence,9 and 9 are the roots of the equation 3x2243=0.

Answer:

We write, x=4x-3xas 2x2×-6=-12x2=4x×-3x

 2x2+x-6=02x2+4x-3x-6=02xx+2-3x+2=0x+22x-3=0

x+2=0 or 2x-3=0x=-2 or x=32
Hence, the roots of the given equation are -2 and 32.

Page No 182:

Question 9:

We write, x=4x-3xas 2x2×-6=-12x2=4x×-3x

 2x2+x-6=02x2+4x-3x-6=02xx+2-3x+2=0x+22x-3=0

x+2=0 or 2x-3=0x=-2 or x=32
Hence, the roots of the given equation are -2 and 32.

Answer:

We write, 6x=x+5x as x2×5=5x2=x×5x

 x2+6x+5=0x2+x+5x+5=0xx+1+5x+1=0x+1x+5=0

x+1=0 or x+5=0x=-1 or x=-5

Hence, the roots of the given equation are −1 and −5.

Page No 182:

Question 10:

We write, 6x=x+5x as x2×5=5x2=x×5x

 x2+6x+5=0x2+x+5x+5=0xx+1+5x+1=0x+1x+5=0

x+1=0 or x+5=0x=-1 or x=-5

Hence, the roots of the given equation are −1 and −5.

Answer:

We write, -3x=3x-6x as 9x2×-2=-18x2=3x×-6x

 9x2-3x-2=09x2+3x-6x-2=03x3x+1-23x+1=03x+13x-2=0
3x+1=0 or 3x-2=0x=-13 or x=23
Hence, the roots of the given equation are -13 and 23.

Page No 182:

Question 11:

We write, -3x=3x-6x as 9x2×-2=-18x2=3x×-6x

 9x2-3x-2=09x2+3x-6x-2=03x3x+1-23x+1=03x+13x-2=0
3x+1=0 or 3x-2=0x=-13 or x=23
Hence, the roots of the given equation are -13 and 23.

Answer:

Given:x2 + 12x + 35 = 0 x2 + 7x + 5x + 35 = 0 x(x + 7) + 5(x + 7) = 0 (x + 5)(x + 7) = 0 x + 5 = 0 or x + 7 = 0 x = 5 or x = 7Hence,5 and 7 are the roots of the equation x2 + 12x + 35 = 0.

Page No 182:

Question 12:

Given:x2 + 12x + 35 = 0 x2 + 7x + 5x + 35 = 0 x(x + 7) + 5(x + 7) = 0 (x + 5)(x + 7) = 0 x + 5 = 0 or x + 7 = 0 x = 5 or x = 7Hence,5 and 7 are the roots of the equation x2 + 12x + 35 = 0.

Answer:

Given:x2 = 18x  77 x2  18x + 77 = 0  x2  (11x + 7x) + 77 = 0 x2  11x  7x + 77 = 0 x(x  11)  7(x  11) = 0 (x  7)(x  11) = 0 x  7 = 0 or x  11 = 0 x = 7 or x = 11Hence, 7 and 11 are the roots of the equation x2 = 18x  77.



Page No 183:

Question 13:

Given:x2 = 18x  77 x2  18x + 77 = 0  x2  (11x + 7x) + 77 = 0 x2  11x  7x + 77 = 0 x(x  11)  7(x  11) = 0 (x  7)(x  11) = 0 x  7 = 0 or x  11 = 0 x = 7 or x = 11Hence, 7 and 11 are the roots of the equation x2 = 18x  77.

Answer:

Given:6x2 + 11x + 3 = 0 6x2 + 9x + 2x + 3 = 0 3x(2x + 3) + 1(2x + 3) = 0 (3x + 1)(2x + 3) = 0 3x + 1 = 0 or 2x + 3 = 0 x = 13 or x = 32Hence, 13 and 32are the roots of the equation 6x2 + 11x + 3 = 0.

Page No 183:

Question 14:

Given:6x2 + 11x + 3 = 0 6x2 + 9x + 2x + 3 = 0 3x(2x + 3) + 1(2x + 3) = 0 (3x + 1)(2x + 3) = 0 3x + 1 = 0 or 2x + 3 = 0 x = 13 or x = 32Hence, 13 and 32are the roots of the equation 6x2 + 11x + 3 = 0.

Answer:

Given:6x2 + x  12 = 0 6x2 + 9x  8x  12 = 0 3x(2x + 3)  4(2x + 3) = 0 (3x  4)(2x + 3) = 0 3x  4 = 0 or 2x + 3 = 0 x = 43 or x = 32Hence, 43 and 32 are the roots of the equation 6x2 + x  12 = 0.

Page No 183:

Question 15:

Given:6x2 + x  12 = 0 6x2 + 9x  8x  12 = 0 3x(2x + 3)  4(2x + 3) = 0 (3x  4)(2x + 3) = 0 3x  4 = 0 or 2x + 3 = 0 x = 43 or x = 32Hence, 43 and 32 are the roots of the equation 6x2 + x  12 = 0.

Answer:

We write, -2x=-3x+x as 3x2×-1=-3x2=-3x×x

 3x2-2x-1=03x2-3x+x-1=03xx-1+1x-1=0x-13x+1=0
x-1=0 or 3x+1=0x=1 or x=-13
Hence, the roots of the given equation are 1 and -13.

Page No 183:

Question 16:

We write, -2x=-3x+x as 3x2×-1=-3x2=-3x×x

 3x2-2x-1=03x2-3x+x-1=03xx-1+1x-1=0x-13x+1=0
x-1=0 or 3x+1=0x=1 or x=-13
Hence, the roots of the given equation are 1 and -13.

Answer:

Given:4x2  9x = 100 4x2  9x  100 = 0 4x2  (25x  16x)  100 = 0 4x2  25x + 16x  100 = 0 x(4x  25) + 4(4x  25) = 0 (4x  25)(x + 4) = 0 4x  25 = 0 or x + 4 = 0 x = 254 or x = 4Hence, the roots of the equation are 254 and 4.

Page No 183:

Question 17:

Given:4x2  9x = 100 4x2  9x  100 = 0 4x2  (25x  16x)  100 = 0 4x2  25x + 16x  100 = 0 x(4x  25) + 4(4x  25) = 0 (4x  25)(x + 4) = 0 4x  25 = 0 or x + 4 = 0 x = 254 or x = 4Hence, the roots of the equation are 254 and 4.

Answer:

Given:15x2  28 = x 15x2  x  28 = 0 15x2 (21x  20x)  28 = 0 15x2  21x + 20x  28 = 0 3x(5x  7) + 4(5x  7) = 0 (3x + 4)(5x  7) = 0 3x + 4 = 0 or 5x  7 = 0 x = 43 or x = 75Hence, the roots of the equation are 43 and 75.

Page No 183:

Question 18:

Given:15x2  28 = x 15x2  x  28 = 0 15x2 (21x  20x)  28 = 0 15x2  21x + 20x  28 = 0 3x(5x  7) + 4(5x  7) = 0 (3x + 4)(5x  7) = 0 3x + 4 = 0 or 5x  7 = 0 x = 43 or x = 75Hence, the roots of the equation are 43 and 75.

Answer:

Given: 11x = 3x2  3x2 + 11x  4 = 0 3x2 + 12x  x  4 = 0 3x(x + 4)  1(x + 4) = 0 (x + 4)(3x  1) = 0 x + 4 = 0 or 3x  1 = 0 x = 4 or x = 13Hence, the roots of the equation are 4 and 13.

Page No 183:

Question 19:

Given: 11x = 3x2  3x2 + 11x  4 = 0 3x2 + 12x  x  4 = 0 3x(x + 4)  1(x + 4) = 0 (x + 4)(3x  1) = 0 x + 4 = 0 or 3x  1 = 0 x = 4 or x = 13Hence, the roots of the equation are 4 and 13.

Answer:

Given:48x2  13x  1 = 0 48x2  (16x  3x)  1 = 0 48x2  16x + 3x  1 = 0 16x(3x  1) + 1(3x  1) = 0 (16x + 1)(3x  1) = 0 16x + 1 = 0 or 3x  1 = 0 x = 116 or x = 13Hence, the roots of the equation are 116 and 13.

Page No 183:

Question 20:

Given:48x2  13x  1 = 0 48x2  (16x  3x)  1 = 0 48x2  16x + 3x  1 = 0 16x(3x  1) + 1(3x  1) = 0 (16x + 1)(3x  1) = 0 16x + 1 = 0 or 3x  1 = 0 x = 116 or x = 13Hence, the roots of the equation are 116 and 13.

Answer:

We write, 22x=32x-2x as x2×-6=-6x2=32x×-2x

 x2+22x-6=0x2+32x-2x-6=0xx+32-2x+32=0x+32x-2=0
x+32=0 or x-2=0x=-32 or x=2
Hence, the roots of the given equation are -32 and 2.

Page No 183:

Question 21:

We write, 22x=32x-2x as x2×-6=-6x2=32x×-2x

 x2+22x-6=0x2+32x-2x-6=0xx+32-2x+32=0x+32x-2=0
x+32=0 or x-2=0x=-32 or x=2
Hence, the roots of the given equation are -32 and 2.

Answer:

Consider 3x2+10x-83=0
Factorising by splitting the middle term;
3x2+12x-2x-83=03x(x+43)-2(x+43)=0(3x-2)(x+43)=03x-2=0 or x+43=0x=23 or x=-43
Hence, the roots of the given equation are 23  and -43.

Page No 183:

Question 22:

Consider 3x2+10x-83=0
Factorising by splitting the middle term;
3x2+12x-2x-83=03x(x+43)-2(x+43)=0(3x-2)(x+43)=03x-2=0 or x+43=0x=23 or x=-43
Hence, the roots of the given equation are 23  and -43.

Answer:

Given:3x2 + 11x + 63 = 0 3x2 + 9x + 2x + 63 = 0 3x(x + 33) + 2(x + 33) = 0 (x + 33)(3x + 2) = 0 x + 33 = 0 or 3x + 2 = 0 x = 33 or x = 23 = 2 × 33 × 3 = 233Hence, the roots of the equation are 33 and 233.

Page No 183:

Question 23:

Given:3x2 + 11x + 63 = 0 3x2 + 9x + 2x + 63 = 0 3x(x + 33) + 2(x + 33) = 0 (x + 33)(3x + 2) = 0 x + 33 = 0 or 3x + 2 = 0 x = 33 or x = 23 = 2 × 33 × 3 = 233Hence, the roots of the equation are 33 and 233.

Answer:

Given:37x2 + 4x  7 = 0 37x2 + 7x  3x  7 = 0 7x(3x + 7)  1(3x + 7) = 0 (3x + 7)(7x  1) = 0 3x + 7 = 0 or 7x  1 = 0 x = 73 or x = 17 = 1 × 77 × 7 = 77Hence, the roots of the equation are 73 and 77.

Page No 183:

Question 24:

Given:37x2 + 4x  7 = 0 37x2 + 7x  3x  7 = 0 7x(3x + 7)  1(3x + 7) = 0 (3x + 7)(7x  1) = 0 3x + 7 = 0 or 7x  1 = 0 x = 73 or x = 17 = 1 × 77 × 7 = 77Hence, the roots of the equation are 73 and 77.

Answer:

We write, -6x=7x-13x as 7x2×-137=-91x2=7x×-13x

7x2-6x-137=07x2+7x-13x-137=07xx+7-13x+7=0x+77x-13=0
x+7=0 or 7x-13=0x=-7 or x=137=1377
Hence, the roots of the given equation are -7 and 1377.

Page No 183:

Question 25:

We write, -6x=7x-13x as 7x2×-137=-91x2=7x×-13x

7x2-6x-137=07x2+7x-13x-137=07xx+7-13x+7=0x+77x-13=0
x+7=0 or 7x-13=0x=-7 or x=137=1377
Hence, the roots of the given equation are -7 and 1377.

Answer:

Given:46x2  13x  26 = 0 46x2  16x + 3x  26 = 0 42x(3x  22) + 3(3x  22) = 0 (42x + 3)(3x  22) = 0 42x + 3 = 0 or 3x  22 = 0 x = 342 = 3 × 242 × 2 68 or x = 223 = 22 × 33 × 3 = 263Hence, the roots of the equation are 68 and 263.

Page No 183:

Question 26:

Given:46x2  13x  26 = 0 46x2  16x + 3x  26 = 0 42x(3x  22) + 3(3x  22) = 0 (42x + 3)(3x  22) = 0 42x + 3 = 0 or 3x  22 = 0 x = 342 = 3 × 242 × 2 68 or x = 223 = 22 × 33 × 3 = 263Hence, the roots of the equation are 68 and 263.

Answer:

We write, -26x=-6x-6x as 3x2×2=6x2=-6x×-6x

3x2-26x+2=03x2-6x-6x+2=03x3x-2-23x-2=03x-23x-2=0
3x-22=03x-2=0x=23 =63
Hence, 63 is the repreated root of the given equation.

Page No 183:

Question 27:

We write, -26x=-6x-6x as 3x2×2=6x2=-6x×-6x

3x2-26x+2=03x2-6x-6x+2=03x3x-2-23x-2=03x-23x-2=0
3x-22=03x-2=0x=23 =63
Hence, 63 is the repreated root of the given equation.

Answer:

We write, -22x=-32x+2x as 3x2×-23=-6x2=-32x×2x

3x2-22x-23=03x2-32x+2x-23=03xx-6+2x-6=0x-63x+2=0
x-6=0 or 3x+2=0x=6 or x=-23 =-63
Hence, the roots of the given equation are 6 and -63.

Page No 183:

Question 28:

We write, -22x=-32x+2x as 3x2×-23=-6x2=-32x×2x

3x2-22x-23=03x2-32x+2x-23=03xx-6+2x-6=0x-63x+2=0
x-6=0 or 3x+2=0x=6 or x=-23 =-63
Hence, the roots of the given equation are 6 and -63.

Answer:

We write, -35x=-25x-5x as x2×10=10x2=-25x×-5x

x2-35x+10=0x2-25x-5x+10=0xx-25-5x-25=0x-25x-5=0
x-5=0 or x-25=0x=5 or x=25
Hence, the roots of the given equation are 5 and 25.

Page No 183:

Question 29:

We write, -35x=-25x-5x as x2×10=10x2=-25x×-5x

x2-35x+10=0x2-25x-5x+10=0xx-25-5x-25=0x-25x-5=0
x-5=0 or x-25=0x=5 or x=25
Hence, the roots of the given equation are 5 and 25.

Answer:

x2-3+1x+3=0x2-3x-x+3=0xx-3-1x-3=0x-3x-1=0
x-3=0 or x-1=0x=3 or x=1
Hence, 1 and 3 are the roots of the given equation.

Page No 183:

Question 30:

x2-3+1x+3=0x2-3x-x+3=0xx-3-1x-3=0x-3x-1=0
x-3=0 or x-1=0x=3 or x=1
Hence, 1 and 3 are the roots of the given equation.

Answer:

We write, 33x=53x-23x as x2×-30=-30x2=53x×-23x

x2+33x-30=0x2+53x-23x-30=0xx+53-23x+53=0x+53x-23=0
x+53=0 or x-23=0x=-53 or x=23
Hence, the roots of the given equation are -53 and 23.

Page No 183:

Question 31:

We write, 33x=53x-23x as x2×-30=-30x2=53x×-23x

x2+33x-30=0x2+53x-23x-30=0xx+53-23x+53=0x+53x-23=0
x+53=0 or x-23=0x=-53 or x=23
Hence, the roots of the given equation are -53 and 23.

Answer:

We write, 7x=5x+2x as 2x2×52=10x2=5x×2x

2x2+7x+52=02x2+5x+2x+52=0x2x+5+22x+5=02x+5x+2=0
x+2=0 or 2x+5=0x=-2 or x=-52=-522
Hence, the roots of the given equation are -2 and -522.

Page No 183:

Question 32:

We write, 7x=5x+2x as 2x2×52=10x2=5x×2x

2x2+7x+52=02x2+5x+2x+52=0x2x+5+22x+5=02x+5x+2=0
x+2=0 or 2x+5=0x=-2 or x=-52=-522
Hence, the roots of the given equation are -2 and -522.

Answer:

We write, 13x = 5x + 8x as 5x2×8=40x2=5x×8x
 5x2+13x+8=05x2+5x+8x+8=05xx+1+8x+1=0x+15x+8=0
x+1=0 or 5x+8=0x=-1 or x=-85
Hence, -1 and -85 are the roots of the given equation.

Page No 183:

Question 33:

We write, 13x = 5x + 8x as 5x2×8=40x2=5x×8x
 5x2+13x+8=05x2+5x+8x+8=05xx+1+8x+1=0x+15x+8=0
x+1=0 or 5x+8=0x=-1 or x=-85
Hence, -1 and -85 are the roots of the given equation.

Answer:

x2-1+2x+2=0x2-x-2x+2=0x(x-1)-2(x-1)=0(x-2)(x-1)=0x-2=0 and x-1=0x=2 and x=1

Page No 183:

Question 34:

x2-1+2x+2=0x2-x-2x+2=0x(x-1)-2(x-1)=0(x-2)(x-1)=0x-2=0 and x-1=0x=2 and x=1

Answer:

Given:9x2 + 6x + 1 = 0 9x2 + 3x + 3x + 1 = 0 3x(3x + 1) + 1(3x + 1) = 0 (3x + 1)(3x + 1) = 0 3x + 1 = 0 or 3x + 1 = 0 x = 13 or x = 13Hence, 13is the root of the equation 9x2 + 6x + 1 = 0.

Page No 183:

Question 35:

Given:9x2 + 6x + 1 = 0 9x2 + 3x + 3x + 1 = 0 3x(3x + 1) + 1(3x + 1) = 0 (3x + 1)(3x + 1) = 0 3x + 1 = 0 or 3x + 1 = 0 x = 13 or x = 13Hence, 13is the root of the equation 9x2 + 6x + 1 = 0.

Answer:

We write, -20x=-10x-10x as 100x2×1=100x2=-10x×-10x
 100x2-20x+1=0100x2-10x-10x+1=010x10x-1-110x-1=010x-110x-1=0
10x-12=010x-1=0x=110
Hence, 110 is the repreated root of the given equation.

Page No 183:

Question 36:

We write, -20x=-10x-10x as 100x2×1=100x2=-10x×-10x
 100x2-20x+1=0100x2-10x-10x+1=010x10x-1-110x-1=010x-110x-1=0
10x-12=010x-1=0x=110
Hence, 110 is the repreated root of the given equation.

Answer:

We write, -x=-x2-x2 as 2x2×18=x24=-x2×-x2
 2x2-x+18=02x2-x2-x2+18=02xx-14-12x-14=0x-142x-12=0
x-14=0 or 2x-12=0x=14 or x=14
Hence, 14 is the repeated root of the given equation.

Page No 183:

Question 37:

We write, -x=-x2-x2 as 2x2×18=x24=-x2×-x2
 2x2-x+18=02x2-x2-x2+18=02xx-14-12x-14=0x-142x-12=0
x-14=0 or 2x-12=0x=14 or x=14
Hence, 14 is the repeated root of the given equation.

Answer:

Given:10x  1x = 3 10x2  1 = 3x    [Multiplying both sides by x] 10x2  3x  1 = 0 10x2  (5x  2x)  1 = 0 10x2  5x + 2x  1 = 0 5x(2x  1) + 1(2x  1) = 0 (2x  1)(5x + 1) = 0 2x  1 = 0 or 5x + 1 = 0 x = 12 or x = 15Hence, the roots of the equation are 12 and 15.

Page No 183:

Question 38:

Given:10x  1x = 3 10x2  1 = 3x    [Multiplying both sides by x] 10x2  3x  1 = 0 10x2  (5x  2x)  1 = 0 10x2  5x + 2x  1 = 0 5x(2x  1) + 1(2x  1) = 0 (2x  1)(5x + 1) = 0 2x  1 = 0 or 5x + 1 = 0 x = 12 or x = 15Hence, the roots of the equation are 12 and 15.

Answer:

Given:2x2  5x + 2 = 0 2  5x + 2x2 = 0    [Multiplying both side by x2] 2x2  5x + 2 = 0 2x2  (4x + x) + 2 = 0 2x2  4x  x + 2 = 0 2x(x  2)  1(x  2) = 0 (2x  1)(x  2) = 0 2x  1 = 0 or x  2 = 0 x = 12 or x = 2Hence, the roots of the equation are 12 and 2.

Page No 183:

Question 39:

Given:2x2  5x + 2 = 0 2  5x + 2x2 = 0    [Multiplying both side by x2] 2x2  5x + 2 = 0 2x2  (4x + x) + 2 = 0 2x2  4x  x + 2 = 0 2x(x  2)  1(x  2) = 0 (2x  1)(x  2) = 0 2x  1 = 0 or x  2 = 0 x = 12 or x = 2Hence, the roots of the equation are 12 and 2.

Answer:

We write, ax=2ax-ax as 2x2×-a2=-2a2x2=2ax×-ax
 2x2+ax-a2=02x2+2ax-ax-a2=02xx+a-ax+a=0x+a2x-a=0
x+a=0 or 2x-a=0x=-a or x=a2
Hence, -a and a2 are the roots of the given equation.

Page No 183:

Question 40:

We write, ax=2ax-ax as 2x2×-a2=-2a2x2=2ax×-ax
 2x2+ax-a2=02x2+2ax-ax-a2=02xx+a-ax+a=0x+a2x-a=0
x+a=0 or 2x-a=0x=-a or x=a2
Hence, -a and a2 are the roots of the given equation.

Answer:

We write, 4bx=2a+bx-2a-bx as 4x2×-a2-b2=-4a2-b2x2=2a+bx×-2a-bx
 4x2+4bx-a2-b2=04x2+2a+bx-2a-bx-a-ba+b=02x2x+a+b-a-b2x+a+b=02x+a+b2x-a-b=0
2x+a+b=0 or 2x-a-b=0x=-a+b2 or x=a-b2
Hence, -a+b2 and a-b2 are the roots of the given equation.

Page No 183:

Question 41:

We write, 4bx=2a+bx-2a-bx as 4x2×-a2-b2=-4a2-b2x2=2a+bx×-2a-bx
 4x2+4bx-a2-b2=04x2+2a+bx-2a-bx-a-ba+b=02x2x+a+b-a-b2x+a+b=02x+a+b2x-a-b=0
2x+a+b=0 or 2x-a-b=0x=-a+b2 or x=a-b2
Hence, -a+b2 and a-b2 are the roots of the given equation.

Answer:

We write, -4a2x=-2a2+b2x-2a2-b2x as 4x2×a4-b4=4a4-b4x2=-2a2+b2x×-2a2-b2x
 4x2-4a2x+a4-b4=04x2-2a2+b2x-2a2-b2x+a2-b2a2+b2=02x2x-a2+b2-a2-b22x-a2+b2=02x-a2+b22x-a2-b2=0
2x-a2+b2=0 or 2x-a2-b2=0x=a2+b22 or x=a2-b22
Hence, a2+b22 and a2-b22 are the roots of the given equation.

Page No 183:

Question 42:

We write, -4a2x=-2a2+b2x-2a2-b2x as 4x2×a4-b4=4a4-b4x2=-2a2+b2x×-2a2-b2x
 4x2-4a2x+a4-b4=04x2-2a2+b2x-2a2-b2x+a2-b2a2+b2=02x2x-a2+b2-a2-b22x-a2+b2=02x-a2+b22x-a2-b2=0
2x-a2+b2=0 or 2x-a2-b2=0x=a2+b22 or x=a2-b22
Hence, a2+b22 and a2-b22 are the roots of the given equation.

Answer:

We write, 5x=a+3x-a-2x as x2×-a2+a-6=-a2+a-6x2=a+3x×-a-2x
 x2+5x-a2+a-6=0x2+a+3x-a-2x-a+3a-2=0xx+a+3-a-2x+a+3=0x+a+3x-a-2=0
x+a+3=0 or x-a-2=0x=-a+3 or x=a-2
Hence, -a+3 and a-2 are the roots of the given equation.

Page No 183:

Question 43:

We write, 5x=a+3x-a-2x as x2×-a2+a-6=-a2+a-6x2=a+3x×-a-2x
 x2+5x-a2+a-6=0x2+a+3x-a-2x-a+3a-2=0xx+a+3-a-2x+a+3=0x+a+3x-a-2=0
x+a+3=0 or x-a-2=0x=-a+3 or x=a-2
Hence, -a+3 and a-2 are the roots of the given equation.

Answer:

We write, -2ax=2b-ax-2b+ax as x2×-4b2-a2=-4b2-a2x2=2b-ax×-2b+ax
 x2-2ax-4b2-a2=0x2+2b-ax-2b+ax-2b-a2b+a=0xx+2b-a-2b+ax+2b-a=0x+2b-ax-2b+a=0
x+2b-a=0 or x-2b+a=0x=-2b-a or x=2b+ax=a-2b or x=a+2b
Hence, a-2b and a+2b are the roots of the given equation.

Page No 183:

Question 44:

We write, -2ax=2b-ax-2b+ax as x2×-4b2-a2=-4b2-a2x2=2b-ax×-2b+ax
 x2-2ax-4b2-a2=0x2+2b-ax-2b+ax-2b-a2b+a=0xx+2b-a-2b+ax+2b-a=0x+2b-ax-2b+a=0
x+2b-a=0 or x-2b+a=0x=-2b-a or x=2b+ax=a-2b or x=a+2b
Hence, a-2b and a+2b are the roots of the given equation.

Answer:

We write, -2b-1x=-b-5x-b+4x as x2×b2-b-20=b2-b-20x2=-b-5x×-b+4x
 x2-2b-1x+b2-b-20=0x2-b-5x-b+4x+b-5b+4=0xx-b-5-b+4x-b-5=0x-b-5x-b+4=0
x-b-5=0 or x-b+4=0x=b-5 or x=b+4
Hence, b-5 and b+4 are the roots of the given equation.

Page No 183:

Question 45:

We write, -2b-1x=-b-5x-b+4x as x2×b2-b-20=b2-b-20x2=-b-5x×-b+4x
 x2-2b-1x+b2-b-20=0x2-b-5x-b+4x+b-5b+4=0xx-b-5-b+4x-b-5=0x-b-5x-b+4=0
x-b-5=0 or x-b+4=0x=b-5 or x=b+4
Hence, b-5 and b+4 are the roots of the given equation.

Answer:

We write, 6x=a+4x-a-2x as x2×-a2+2a-8=-a2+2a-8x2=a+4x×-a-2x
 x2+6x-a2+2a-8=0x2+a+4x-a-2x-a+4a-2=0xx+a+4-a-2x+a+4=0x+a+4x-a-2=0
x+a+4=0 or x-a-2=0x=-a+4 or x=a-2
Hence, -a+4 and a-2 are the roots of the given equation.

Page No 183:

Question 46:

We write, 6x=a+4x-a-2x as x2×-a2+2a-8=-a2+2a-8x2=a+4x×-a-2x
 x2+6x-a2+2a-8=0x2+a+4x-a-2x-a+4a-2=0xx+a+4-a-2x+a+4=0x+a+4x-a-2=0
x+a+4=0 or x-a-2=0x=-a+4 or x=a-2
Hence, -a+4 and a-2 are the roots of the given equation.

Answer:

Given:abx2 + (b2  ac)x  bc = 0 abx2 + b2x  acx  bc = 0 bx(ax + b)  c(ax + b) = 0 (bx  c)(ax + b) = 0 bx  c = 0 or ax + b = 0 x = cb or x = baHence, the roots of the equation are cb and ba.

Page No 183:

Question 47:

Given:abx2 + (b2  ac)x  bc = 0 abx2 + b2x  acx  bc = 0 bx(ax + b)  c(ax + b) = 0 (bx  c)(ax + b) = 0 bx  c = 0 or ax + b = 0 x = cb or x = baHence, the roots of the equation are cb and ba.

Answer:

We write, -4ax=-b+2ax+b-2ax as x2×-b2+4a2=-b2+4a2x2=-b+2ax×b-2ax
 x2-4ax-b2+4a2=0x2-b+2ax+b-2ax-b-2ab+2a=0xx-b+2a+b-2ax-b+2a=0x-b+2ax+b-2a=0
x-b+2a=0 or x+b-2a=0x=2a+b or x=-b-2ax=2a+b or x=2a-b
Hence, 2a+b and 2a-b are the roots of the given equation.

Page No 183:

Question 48:

We write, -4ax=-b+2ax+b-2ax as x2×-b2+4a2=-b2+4a2x2=-b+2ax×b-2ax
 x2-4ax-b2+4a2=0x2-b+2ax+b-2ax-b-2ab+2a=0xx-b+2a+b-2ax-b+2a=0x-b+2ax+b-2a=0
x-b+2a=0 or x+b-2a=0x=2a+b or x=-b-2ax=2a+b or x=2a-b
Hence, 2a+b and 2a-b are the roots of the given equation.

Answer:

Given:4x2  2(a2 + b2)x + a2b2 = 0 4x2  2a2x  2b2x + a2b2 = 0 2x(2x  a2)  b2(2x  a2) = 0 (2x  b2)(2x  a2) = 0 2x  b2 = 0 or 2x  a2 = 0 x = b22 or x = a22Hence, the roots of the equation are b22 and a22.

Page No 183:

Question 49:

Given:4x2  2(a2 + b2)x + a2b2 = 0 4x2  2a2x  2b2x + a2b2 = 0 2x(2x  a2)  b2(2x  a2) = 0 (2x  b2)(2x  a2) = 0 2x  b2 = 0 or 2x  a2 = 0 x = b22 or x = a22Hence, the roots of the equation are b22 and a22.

Answer:

Given:12abx2  (9a2  8b2)x  6ab = 0 12abx2  9a2x + 8b2x  6ab = 0 3ax(4bx  3a) + 2b(4bx  3a) = 0 (3ax + 2b)(4bx  3a) = 0 3ax + 2b = 0 or 4bx  3a = 0 x = 2b3a or x = 3a4bHence, the roots of the equation are 2b3a and 3a4b.

Page No 183:

Question 50:

Given:12abx2  (9a2  8b2)x  6ab = 0 12abx2  9a2x + 8b2x  6ab = 0 3ax(4bx  3a) + 2b(4bx  3a) = 0 (3ax + 2b)(4bx  3a) = 0 3ax + 2b = 0 or 4bx  3a = 0 x = 2b3a or x = 3a4bHence, the roots of the equation are 2b3a and 3a4b.

Answer:

Given:a2b2x2 + b2x  a2x  1 = 0 b2x(a2x + 1)  1(a2x + 1) = 0 (b2x  1)(a2x + 1) = 0 (b2x  1) = 0 or  (a2x + 1) = 0 x = 1b2 or x = 1a2Hence, 1b2 and 1a2 are the roots of the given equation.

Page No 183:

Question 51:

Given:a2b2x2 + b2x  a2x  1 = 0 b2x(a2x + 1)  1(a2x + 1) = 0 (b2x  1)(a2x + 1) = 0 (b2x  1) = 0 or  (a2x + 1) = 0 x = 1b2 or x = 1a2Hence, 1b2 and 1a2 are the roots of the given equation.

Answer:

We write, -9a+bx=-32a+bx-3a+2bx as 9x2×2a2+5ab+2b2=92a2+5ab+2b2x2=-32a+bx×-3a+2bx
9x2-9a+bx+2a2+5ab+2b2=09x2-32a+bx-3a+2bx+2a+ba+2b=03x3x-2a+b-a+2b3x-2a+b=03x-2a+b3x-a+2b=0
3x-2a+b=0 or 3x-a+2b=0x=2a+b3 or x=a+2b3
Hence, 2a+b3 and a+2b3 are the roots of the given equation.

Page No 183:

Question 52:

We write, -9a+bx=-32a+bx-3a+2bx as 9x2×2a2+5ab+2b2=92a2+5ab+2b2x2=-32a+bx×-3a+2bx
9x2-9a+bx+2a2+5ab+2b2=09x2-32a+bx-3a+2bx+2a+ba+2b=03x3x-2a+b-a+2b3x-2a+b=03x-2a+b3x-a+2b=0
3x-2a+b=0 or 3x-a+2b=0x=2a+b3 or x=a+2b3
Hence, 2a+b3 and a+2b3 are the roots of the given equation.

Answer:

16x-1=15x+1, x0, -116x-15x+1=116x+16-15xxx+1=1x+16x2+x=1
x2+x=x+16                     Cross multiplicationx2-16=0x+4x-4=0x+4=0 or x-4=0
x=-4 or x=4
Hence, −4 and 4 are the roots of the given equation.

Page No 183:

Question 53:

16x-1=15x+1, x0, -116x-15x+1=116x+16-15xxx+1=1x+16x2+x=1
x2+x=x+16                     Cross multiplicationx2-16=0x+4x-4=0x+4=0 or x-4=0
x=-4 or x=4
Hence, −4 and 4 are the roots of the given equation.

Answer:

4x-3=52x+3,   x0, -324x-52x+3=38x+12-5xx2x+3=33x+122x2+3x=3
x+42x2+3x=12x2+3x=x+4                 Cross multiplication2x2+2x-4=0x2+x-2=0
x2+2x-x-2=0xx+2-1x+2=0x+2x-1=0x+2=0 or x-1=0
x=-2 or x=1
Hence, −2 and 1 are the roots of the given equation.

Page No 183:

Question 54:

4x-3=52x+3,   x0, -324x-52x+3=38x+12-5xx2x+3=33x+122x2+3x=3
x+42x2+3x=12x2+3x=x+4                 Cross multiplication2x2+2x-4=0x2+x-2=0
x2+2x-x-2=0xx+2-1x+2=0x+2x-1=0x+2=0 or x-1=0
x=-2 or x=1
Hence, −2 and 1 are the roots of the given equation.

Answer:

3x+1-12=23x-1,    x-1, 133x+1-23x-1=129x-3-2x-2x+13x-1=127x-53x2+2x-1=12
3x2+2x-1=14x-10                    Cross multiplication3x2-12x+9=0x2-4x+3=0x2-3x-x+3=0
xx-3-1x-3=0x-3x-1=0x-3=0 or x-1=0x=3 or x=1
Hence, 1 and 3 are the roots of the given equation.



Page No 184:

Question 55:

3x+1-12=23x-1,    x-1, 133x+1-23x-1=129x-3-2x-2x+13x-1=127x-53x2+2x-1=12
3x2+2x-1=14x-10                    Cross multiplication3x2-12x+9=0x2-4x+3=0x2-3x-x+3=0
xx-3-1x-3=0x-3x-1=0x-3=0 or x-1=0x=3 or x=1
Hence, 1 and 3 are the roots of the given equation.

Answer:

(i)
1x-1-1x+5=67,   x1, -5x+5-x+1x-1x+5=676x2+4x-5=67x2+4x-5=7
x2+4x-12=0x2+6x-2x-12=0xx+6-2x+6=0x+6x-2=0
x+6=0 or x-2=0x=-6 or x=2
Hence, −6 and 2 are the roots of the given equation.

(ii)
12x-3+1x-5=11912x-3+1x-5=109(x-5)+(2x-3)(2x-3)(x-5)=1093x-82x2-3x-10x+15=1093x-82x2-13x+15=10927x-72=20x2-130x+15020x2-157x+222=020x2-120x-37x+222=020x(x-6)-37(x-6)=0(20x-37)(x-6)=020x-37=0 or x-6=0x=3720 or x=6

Page No 184:

Question 56:

(i)
1x-1-1x+5=67,   x1, -5x+5-x+1x-1x+5=676x2+4x-5=67x2+4x-5=7
x2+4x-12=0x2+6x-2x-12=0xx+6-2x+6=0x+6x-2=0
x+6=0 or x-2=0x=-6 or x=2
Hence, −6 and 2 are the roots of the given equation.

(ii)
12x-3+1x-5=11912x-3+1x-5=109(x-5)+(2x-3)(2x-3)(x-5)=1093x-82x2-3x-10x+15=1093x-82x2-13x+15=10927x-72=20x2-130x+15020x2-157x+222=020x2-120x-37x+222=020x(x-6)-37(x-6)=0(20x-37)(x-6)=020x-37=0 or x-6=0x=3720 or x=6

Answer:

12a+b+2x=12a+1b+12x12a+b+2x-12x=12a+1b2x-2a-b-2x2x2a+b+2x=2a+b2ab-2a+b4x2+4ax+2bx=2a+b2ab
4x2+4ax+2bx=-2ab4x2+4ax+2bx+2ab=04xx+a+2bx+a=0x+a4x+2b=0
x+a=0 or 4x+2b=0x=-a or x=-b2
Hence, -a and -b2 are the roots of the given equation.

Page No 184:

Question 57:

12a+b+2x=12a+1b+12x12a+b+2x-12x=12a+1b2x-2a-b-2x2x2a+b+2x=2a+b2ab-2a+b4x2+4ax+2bx=2a+b2ab
4x2+4ax+2bx=-2ab4x2+4ax+2bx+2ab=04xx+a+2bx+a=0x+a4x+2b=0
x+a=0 or 4x+2b=0x=-a or x=-b2
Hence, -a and -b2 are the roots of the given equation.

Answer:

Given:x+3x-2-1-xx=414(x + 3)(x  2)  (1  x)x = 174 x(x + 3)  (1  x)(x  2)(x  2)x = 174 x2 + 3x  (x  2  x2 + 2x)x2  2x = 174 x2 + 3x + x2  3x + 2x2  2x = 174 2x2 + 2x2  2x = 174 8x2 + 8 = 17x2  34x        [On cross multiplying] 9x2 + 34x + 8 = 0 9x2  34x  8 = 0 9x2  36x + 2x  8 = 0 9x(x  4) + 2(x  4) = 0 (x  4)(9x + 2) = 0 x  4 = 0 or 9x + 2 = 0 x = 4 or x = 29Hence, the roots of the equation are 4 and 29.

Page No 184:

Question 58:

Given:x+3x-2-1-xx=414(x + 3)(x  2)  (1  x)x = 174 x(x + 3)  (1  x)(x  2)(x  2)x = 174 x2 + 3x  (x  2  x2 + 2x)x2  2x = 174 x2 + 3x + x2  3x + 2x2  2x = 174 2x2 + 2x2  2x = 174 8x2 + 8 = 17x2  34x        [On cross multiplying] 9x2 + 34x + 8 = 0 9x2  34x  8 = 0 9x2  36x + 2x  8 = 0 9x(x  4) + 2(x  4) = 0 (x  4)(9x + 2) = 0 x  4 = 0 or 9x + 2 = 0 x = 4 or x = 29Hence, the roots of the equation are 4 and 29.

Answer:

3x-47+73x-4=52,   x433x-42+4973x-4=529x2-24x+16+4921x-28=529x2-24x+6521x-28=52
18x2-48x+130=105x-14018x2-153x+270=02x2-17x+30=02x2-12x-5x+30=0
2xx-6-5x-6=0x-62x-5=0x-6=0 or 2x-5=0x=6 or x=52
Hence, 6 and 52 are the roots of the given equation.

Page No 184:

Question 59:

3x-47+73x-4=52,   x433x-42+4973x-4=529x2-24x+16+4921x-28=529x2-24x+6521x-28=52
18x2-48x+130=105x-14018x2-153x+270=02x2-17x+30=02x2-12x-5x+30=0
2xx-6-5x-6=0x-62x-5=0x-6=0 or 2x-5=0x=6 or x=52
Hence, 6 and 52 are the roots of the given equation.

Answer:

(i)
xx-1+x-1x=414,   x0, 1x2+x-12xx-1=174x2+x2-2x+1x2-x=1742x2-2x+1x2-x=174
8x2-8x+4=17x2-17x9x2-9x-4=09x2-12x+3x-4=03x3x-4+13x-4=0
3x-43x+1=03x-4=0 or 3x+1=0x=43 or x=-13
Hence, 43 and -13 are the roots of the given equation.

(ii)
x-12x+1+2x+1x-1=2(x-1)2+(2x+1)2(2x+1)(x-1)=2(x2+1-2x)+(4x2+1+4x)=2(2x+1)(x-1)5x2+2x+2=2(2x2-x-1)5x2+2x+2=4x2-2x-2x2+4x+4=0x2+2x+2x+4=0x(x+2)+2(x+2)=0(x+2)(x+2)=0(x+2)=0 or (x+2)=0x=-2 or x=-2x=-2

Page No 184:

Question 60:

(i)
xx-1+x-1x=414,   x0, 1x2+x-12xx-1=174x2+x2-2x+1x2-x=1742x2-2x+1x2-x=174
8x2-8x+4=17x2-17x9x2-9x-4=09x2-12x+3x-4=03x3x-4+13x-4=0
3x-43x+1=03x-4=0 or 3x+1=0x=43 or x=-13
Hence, 43 and -13 are the roots of the given equation.

(ii)
x-12x+1+2x+1x-1=2(x-1)2+(2x+1)2(2x+1)(x-1)=2(x2+1-2x)+(4x2+1+4x)=2(2x+1)(x-1)5x2+2x+2=2(2x2-x-1)5x2+2x+2=4x2-2x-2x2+4x+4=0x2+2x+2x+4=0x(x+2)+2(x+2)=0(x+2)(x+2)=0(x+2)=0 or (x+2)=0x=-2 or x=-2x=-2

Answer:

xx+1+x+1x=2415,  x0, -1x2+x+12xx+1=3415x2+x2+2x+1x2+x=34152x2+2x+1x2+x=3415
30x2+30x+15=34x2+34x4x2+4x-15=04x2+10x-6x-15=02x2x+5-32x+5=0
2x+52x-3=02x+5=0 or 2x-3=0x=-52 or x=32
Hence, -52 and 32 are the roots of the given equation.

Page No 184:

Question 61:

xx+1+x+1x=2415,  x0, -1x2+x+12xx+1=3415x2+x2+2x+1x2+x=34152x2+2x+1x2+x=3415
30x2+30x+15=34x2+34x4x2+4x-15=04x2+10x-6x-15=02x2x+5-32x+5=0
2x+52x-3=02x+5=0 or 2x-3=0x=-52 or x=32
Hence, -52 and 32 are the roots of the given equation.

Answer:

x-4x-5+x-6x-7=313,  x5, 7x-4x-7+x-5x-6x-5x-7=103x2-11x+28+x2-11x+30x2-12x+35=1032x2-22x+58x2-12x+35=103
x2-11x+29x2-12x+35=533x2-33x+87=5x2-60x+1752x2-27x+88=0
2x2-16x-11x+88=02xx-8-11x-8=0x-82x-11=0
x-8=0 or 2x-11=0x=8 or x=112
Hence, 8 and 112 are the roots of the given equation.

Page No 184:

Question 62:

x-4x-5+x-6x-7=313,  x5, 7x-4x-7+x-5x-6x-5x-7=103x2-11x+28+x2-11x+30x2-12x+35=1032x2-22x+58x2-12x+35=103
x2-11x+29x2-12x+35=533x2-33x+87=5x2-60x+1752x2-27x+88=0
2x2-16x-11x+88=02xx-8-11x-8=0x-82x-11=0
x-8=0 or 2x-11=0x=8 or x=112
Hence, 8 and 112 are the roots of the given equation.

Answer:

x-1x-2+x-3x-4=313,   x2, 4x-1x-4+x-2x-3x-2x-4=103x2-5x+4+x2-5x+6x2-6x+8=1032x2-10x+10x2-6x+8=103
x2-5x+5x2-6x+8=533x2-15x+15=5x2-30x+402x2-15x+25=02x2-10x-5x+25=0
2xx-5-5x-5=0x-52x-5=0x-5=0 or 2x-5=0x=5 or x=52
Hence, 5 and 52 are the roots of the given equation.

Page No 184:

Question 63:

x-1x-2+x-3x-4=313,   x2, 4x-1x-4+x-2x-3x-2x-4=103x2-5x+4+x2-5x+6x2-6x+8=1032x2-10x+10x2-6x+8=103
x2-5x+5x2-6x+8=533x2-15x+15=5x2-30x+402x2-15x+25=02x2-10x-5x+25=0
2xx-5-5x-5=0x-52x-5=0x-5=0 or 2x-5=0x=5 or x=52
Hence, 5 and 52 are the roots of the given equation.

Answer:

Given:1(x  2) + 2(x  1) = 6x (x  1) + 2(x  2)(x  1)(x  2) = 6x 3x  5x2  3x + 2 = 6x 3x2  5x = 6x2  18x + 12        [On cross multiplying] 3x2  13x + 12 = 0 3x2  (9 + 4)x + 12 = 0 3x2  9x  4x + 12 = 0 3x(x  3)  4(x  3) = 0 (3x  4)(x  3) = 0  3x  4 = 0 or x  3 = 0 x = 43 or x = 3Hence, the roots of the equation are 43 and 3.

Page No 184:

Question 64:

Given:1(x  2) + 2(x  1) = 6x (x  1) + 2(x  2)(x  1)(x  2) = 6x 3x  5x2  3x + 2 = 6x 3x2  5x = 6x2  18x + 12        [On cross multiplying] 3x2  13x + 12 = 0 3x2  (9 + 4)x + 12 = 0 3x2  9x  4x + 12 = 0 3x(x  3)  4(x  3) = 0 (3x  4)(x  3) = 0  3x  4 = 0 or x  3 = 0 x = 43 or x = 3Hence, the roots of the equation are 43 and 3.

Answer:

(i)

1x+1+2x+2=5x+4,   x-1, -2, -4x+2+2x+2x+1x+2=5x+43x+4x2+3x+2=5x+43x+4x+4=5x2+3x+2
3x2+16x+16=5x2+15x+102x2-x-6=02x2-4x+3x-6=02xx-2+3x-2=0
x-22x+3=0x-2=0 or 2x+3=0x=2 or x=-32
Hence, 2 and -32 are the roots of the given equation.

(ii)

1x+1+35x+1=5x+4(5x+1)+(3x+3)(x+1)(5x+1)=5x+4(x+4)(5x+1)+(3x+3)=5(x+1)(5x+1)(x+4)8x+4=25x2+30x+58x2+4x+32x+16=25x2+30x+58x2+36x+16=25x2+30x+517x2-6x-11=017x2-17x+11x-11=017x(x-1)+11(x-1)=0(17x+11)(x-1)=0(17x+11)=0 or (x-1)=0x=-1117 or x=1

Page No 184:

Question 65:

(i)

1x+1+2x+2=5x+4,   x-1, -2, -4x+2+2x+2x+1x+2=5x+43x+4x2+3x+2=5x+43x+4x+4=5x2+3x+2
3x2+16x+16=5x2+15x+102x2-x-6=02x2-4x+3x-6=02xx-2+3x-2=0
x-22x+3=0x-2=0 or 2x+3=0x=2 or x=-32
Hence, 2 and -32 are the roots of the given equation.

(ii)

1x+1+35x+1=5x+4(5x+1)+(3x+3)(x+1)(5x+1)=5x+4(x+4)(5x+1)+(3x+3)=5(x+1)(5x+1)(x+4)8x+4=25x2+30x+58x2+4x+32x+16=25x2+30x+58x2+36x+16=25x2+30x+517x2-6x-11=017x2-17x+11x-11=017x(x-1)+11(x-1)=0(17x+11)(x-1)=0(17x+11)=0 or (x-1)=0x=-1117 or x=1

Answer:

33x-12x+3-22x+33x-1=5,   x13, -3233x-12-22x+322x+33x-1=539x2-6x+1-24x2+12x+96x2+7x-3=527x2-18x+3-8x2-24x-186x2+7x-3=5
19x2-42x-156x2+7x-3=519x2-42x-15=30x2+35x-1511x2+77x=011xx+7=0
x=0 or x+7=0x=0 or x=-7
Hence, 0 and −7 are the roots of the given equation.

Page No 184:

Question 66:

33x-12x+3-22x+33x-1=5,   x13, -3233x-12-22x+322x+33x-1=539x2-6x+1-24x2+12x+96x2+7x-3=527x2-18x+3-8x2-24x-186x2+7x-3=5
19x2-42x-156x2+7x-3=519x2-42x-15=30x2+35x-1511x2+77x=011xx+7=0
x=0 or x+7=0x=0 or x=-7
Hence, 0 and −7 are the roots of the given equation.

Answer:

37x+15x-3-45x-37x+1=11,   x35, -1737x+12-45x-325x-37x+1=11349x2+14x+1-425x2-30x+935x2-16x-3=11147x2+42x+3-100x2+120x-3635x2-16x-3=11
47x2+162x-3335x2-16x-3=1147x2+162x-33=385x2-176x-33338x2-338x=0338xx-1=0
x=0 or x-1=0x=0 or x=1
Hence, 0 and 1 are the roots of the given equation.

Page No 184:

Question 67:

37x+15x-3-45x-37x+1=11,   x35, -1737x+12-45x-325x-37x+1=11349x2+14x+1-425x2-30x+935x2-16x-3=11147x2+42x+3-100x2+120x-3635x2-16x-3=11
47x2+162x-3335x2-16x-3=1147x2+162x-33=385x2-176x-33338x2-338x=0338xx-1=0
x=0 or x-1=0x=0 or x=1
Hence, 0 and 1 are the roots of the given equation.

Answer:

Given:4x  32x + 1  102x + 14x  3 = 3Putting 4x  32x + 1 = y, we get:y  10y = 3 y2  10y = 3 y2  10 = 3y [On cross multiplying] y2  3y  10 = 0 y2  (5  2)y  10 = 0 y2  5y + 2y  10 = 0 y(y  5) + 2(y  5) = 0 (y  5)(y + 2) = 0 y  5 = 0 or y + 2 = 0 y = 5 or y = 2Case IIf y = 5, we get:4x  32x + 1 = 5 4x  3 = 5(2x + 1) [On cross multiplying] 4x  3 = 10x + 5 6x = 8 6x = 8 x = 8463 x = 43Case IIIf y = 2, we get:4x  32x + 1 2 4x  3 = 2(2x + 1) 4x  3 = 4x  2 8x = 1 x = 18Hence, the roots of the equation are 43 and 18.

Page No 184:

Question 68:

Given:4x  32x + 1  102x + 14x  3 = 3Putting 4x  32x + 1 = y, we get:y  10y = 3 y2  10y = 3 y2  10 = 3y [On cross multiplying] y2  3y  10 = 0 y2  (5  2)y  10 = 0 y2  5y + 2y  10 = 0 y(y  5) + 2(y  5) = 0 (y  5)(y + 2) = 0 y  5 = 0 or y + 2 = 0 y = 5 or y = 2Case IIf y = 5, we get:4x  32x + 1 = 5 4x  3 = 5(2x + 1) [On cross multiplying] 4x  3 = 10x + 5 6x = 8 6x = 8 x = 8463 x = 43Case IIIf y = 2, we get:4x  32x + 1 2 4x  3 = 2(2x + 1) 4x  3 = 4x  2 8x = 1 x = 18Hence, the roots of the equation are 43 and 18.

Answer:

Given:xx + 12  5xx + 1 + 6 = 0Putting xx + 1= y, we get:y2  5y + 6 = 0 y2  5y + 6 = 0 y2  (3 + 2)y + 6 = 0 y2  3y  2y + 6 = 0 y(y  3)  2(y  3) = 0 (y  3)(y  2) = 0 y  3 = 0 or y - 2 = 0 y = 3 or y = 2Case IIf y=3, we get:xx + 1 = 3 x = 3(x + 1) [On cross multiplying] x = 3x + 3 x = 32Case IIIf y = 2, we get:xx + 1 = 2 x = 2(x + 1) x = 2x + 2 x = 2 x = 2 Hence, the roots of the equation are 32 and 2.

Page No 184:

Question 69:

Given:xx + 12  5xx + 1 + 6 = 0Putting xx + 1= y, we get:y2  5y + 6 = 0 y2  5y + 6 = 0 y2  (3 + 2)y + 6 = 0 y2  3y  2y + 6 = 0 y(y  3)  2(y  3) = 0 (y  3)(y  2) = 0 y  3 = 0 or y - 2 = 0 y = 3 or y = 2Case IIf y=3, we get:xx + 1 = 3 x = 3(x + 1) [On cross multiplying] x = 3x + 3 x = 32Case IIIf y = 2, we get:xx + 1 = 2 x = 2(x + 1) x = 2x + 2 x = 2 x = 2 Hence, the roots of the equation are 32 and 2.

Answer:

a(x  b) + b(x  a) = 2 [a(x  b)  1] + [b(x  a)  1] = 0 a  (x  b)x  b + b  (x  a)x  a = 0 a  x + bx  b + a  x + bx  a = 0 (a  x + b)[1(x  b) + 1(x  a)] = 0 (a  x + b)[(x  a) + (x  b)(x  b)(x  a)] = 0 (a  x + b)[2x  (a + b)(x  b)(x  a)] = 0 (a  x + b)[2x  (a + b)] = 0 a  x + b = 0 or 2x  (a + b) = 0 x = a + b or x = a + b2Hence, the roots of the equation are (a + b) and (a + b2).  

Page No 184:

Question 70:

a(x  b) + b(x  a) = 2 [a(x  b)  1] + [b(x  a)  1] = 0 a  (x  b)x  b + b  (x  a)x  a = 0 a  x + bx  b + a  x + bx  a = 0 (a  x + b)[1(x  b) + 1(x  a)] = 0 (a  x + b)[(x  a) + (x  b)(x  b)(x  a)] = 0 (a  x + b)[2x  (a + b)(x  b)(x  a)] = 0 (a  x + b)[2x  (a + b)] = 0 a  x + b = 0 or 2x  (a + b) = 0 x = a + b or x = a + b2Hence, the roots of the equation are (a + b) and (a + b2).  

Answer:

a(ax  1) + b(bx  1) = (a + b) [a(ax  1)  b] + [b(bx  1)  a] = 0 a  b(ax  1)ax  1 + b  a(bx  1)bx  1 = 0 a  abx + bax  1 + a  abx + bbx  1 = 0 (a  abx + b)[1(ax  1) + 1(bx  1)] = 0 (a  abx + b)[(bx  1) + (ax  1)(ax  1)(bx  1)] = 0 (a  abx + b)[(a + b)x  2(ax  1)(bx  1)] = 0 (a  abx + b)[(a + b)x  2] = 0 a  abx + b = 0 or (a + b)x  2 = 0 x = (a + b)ab or x = 2(a + b) Hence, the roots of the equation are (a + b)ab and 2(a + b).

Page No 184:

Question 71:

a(ax  1) + b(bx  1) = (a + b) [a(ax  1)  b] + [b(bx  1)  a] = 0 a  b(ax  1)ax  1 + b  a(bx  1)bx  1 = 0 a  abx + bax  1 + a  abx + bbx  1 = 0 (a  abx + b)[1(ax  1) + 1(bx  1)] = 0 (a  abx + b)[(bx  1) + (ax  1)(ax  1)(bx  1)] = 0 (a  abx + b)[(a + b)x  2(ax  1)(bx  1)] = 0 (a  abx + b)[(a + b)x  2] = 0 a  abx + b = 0 or (a + b)x  2 = 0 x = (a + b)ab or x = 2(a + b) Hence, the roots of the equation are (a + b)ab and 2(a + b).

Answer:

 3(x+2) + 3x = 103x.9  + 13x = 10Let 3x be equal to y. 9y + 1y = 10 9y2 + 1 = 10y 9y2 - 10y + 1 = 0 (y  1)(9y  1) = 0 y  1 = 0 or 9y  1 = 0 y = 1 or y = 19 3x = 1 or 3x = 19 3x = 30  or 3x = 32 x = 0 or x = 2Hence, 0 and 2 are the roots of the given equation.

Page No 184:

Question 72:

 3(x+2) + 3x = 103x.9  + 13x = 10Let 3x be equal to y. 9y + 1y = 10 9y2 + 1 = 10y 9y2 - 10y + 1 = 0 (y  1)(9y  1) = 0 y  1 = 0 or 9y  1 = 0 y = 1 or y = 19 3x = 1 or 3x = 19 3x = 30  or 3x = 32 x = 0 or x = 2Hence, 0 and 2 are the roots of the given equation.

Answer:

Given:4(x+1) + 4(1x) = 10 4x.4 + 41.14x = 10Let 4xbe y. 4y + 4y = 10 4y2  10y + 4 = 0 4y2  8y  2y + 4 = 0 4y(y  2)  2(y  2) = 0 y = 2 or y = 24 = 12 4x = 2 or 12 4x = 22x = 21  or  22x = 2-1 x = 12 or  x = -12Hence, 12 and -12 are roots of the given equation.

Page No 184:

Question 73:

Given:4(x+1) + 4(1x) = 10 4x.4 + 41.14x = 10Let 4xbe y. 4y + 4y = 10 4y2  10y + 4 = 0 4y2  8y  2y + 4 = 0 4y(y  2)  2(y  2) = 0 y = 2 or y = 24 = 12 4x = 2 or 12 4x = 22x = 21  or  22x = 2-1 x = 12 or  x = -12Hence, 12 and -12 are roots of the given equation.

Answer:

Given:22x  3.2(x+2) + 32 = 0 (2x)2  3.2x.22 + 32 = 0Let 2x be y. y2  12y + 32 = 0 y2  8y  4y + 32 = 0 y(y  8)  4(y  8) = 0 (y  8) = 0 or (y  4) = 0 y = 8 or y = 4 2x = 8 or 2x = 4 2x = 23 or 2x = 22 x= 2 or 3 Hence, 2 and 3 are the roots of the given equation.



Page No 193:

Question 1:

Given:22x  3.2(x+2) + 32 = 0 (2x)2  3.2x.22 + 32 = 0Let 2x be y. y2  12y + 32 = 0 y2  8y  4y + 32 = 0 y(y  8)  4(y  8) = 0 (y  8) = 0 or (y  4) = 0 y = 8 or y = 4 2x = 8 or 2x = 4 2x = 23 or 2x = 22 x= 2 or 3 Hence, 2 and 3 are the roots of the given equation.

Answer:

(i) 2x2  7x + 6 = 0Here,a = 2,b = 7,c = 6Discriminant D is diven by:D = b2  4ac= (7)2  4 × 2 × 6= 49  48= 1

(ii) 3x2  2x + 8 = 0Here,a = 3,b = 2,c = 8Discriminant D is given by:D = b2  4ac(2)2  4 × 3 × 84  96= 92

​(iii) 2x2  52x + 4 = 0Here,a = 2,b = 52,c = 4Discriminant D is given by:D = b2  4ac= (52)2  4 × 2 × 4= (25 × 2)  32= 50  32= 18

​(iv)3x2 + 22x  23 = 0Here,a = 3,b = 22,c = 23Discriminant D is given by:D = b2  4ac= (22)2  4 × 3 × (23)= (4 × 2) + (8 × 3)= 8 + 24= 32

(v) x-12x-1=0

2x2-3x+1=0

Comparing it with ax2+bx+c=0, we get

a = 2, b = −3 and c = 1

∴ Discriminant, D = b2-4ac=-32-4×2×1=9-8=1

​(vi) 1  x = 2x2 2x2 + x  1 = 0Here,a = 2,b = 1,c = 1Discriminant D is given by:D = b2  4ac= 12  4 × 2(1)= 1 + 8= 9

Page No 193:

Question 2:

(i) 2x2  7x + 6 = 0Here,a = 2,b = 7,c = 6Discriminant D is diven by:D = b2  4ac= (7)2  4 × 2 × 6= 49  48= 1

(ii) 3x2  2x + 8 = 0Here,a = 3,b = 2,c = 8Discriminant D is given by:D = b2  4ac(2)2  4 × 3 × 84  96= 92

​(iii) 2x2  52x + 4 = 0Here,a = 2,b = 52,c = 4Discriminant D is given by:D = b2  4ac= (52)2  4 × 2 × 4= (25 × 2)  32= 50  32= 18

​(iv)3x2 + 22x  23 = 0Here,a = 3,b = 22,c = 23Discriminant D is given by:D = b2  4ac= (22)2  4 × 3 × (23)= (4 × 2) + (8 × 3)= 8 + 24= 32

(v) x-12x-1=0

2x2-3x+1=0

Comparing it with ax2+bx+c=0, we get

a = 2, b = −3 and c = 1

∴ Discriminant, D = b2-4ac=-32-4×2×1=9-8=1

​(vi) 1  x = 2x2 2x2 + x  1 = 0Here,a = 2,b = 1,c = 1Discriminant D is given by:D = b2  4ac= 12  4 × 2(1)= 1 + 8= 9

Answer:

Given:x2  4x  1 = 0On comparing it with ax2 + bx + c = 0, we get:a = 1, b = 4 and c = 1Discriminant D is given by:D = (b2  4ac)(4)2  4 × 1 × (1)= 16 + 420= 20 > 0Hence, the roots of the equation are real.Roots α and β are given by:α = b + D2a = (4) + 202 × 1 = 4 + 252 = 2(2 + 5)2 = (2 + 5)β = b  D2a = (4)  202 = 4  252 = 2(2  5)2 = (2  5)Thus, the roots of the equation are (2 + 5)  and (2  5).

Page No 193:

Question 3:

Given:x2  4x  1 = 0On comparing it with ax2 + bx + c = 0, we get:a = 1, b = 4 and c = 1Discriminant D is given by:D = (b2  4ac)(4)2  4 × 1 × (1)= 16 + 420= 20 > 0Hence, the roots of the equation are real.Roots α and β are given by:α = b + D2a = (4) + 202 × 1 = 4 + 252 = 2(2 + 5)2 = (2 + 5)β = b  D2a = (4)  202 = 4  252 = 2(2  5)2 = (2  5)Thus, the roots of the equation are (2 + 5)  and (2  5).

Answer:

Given:x2  6x + 4 = 0On comparing it with ax2 + bx + c = 0, we get:a = 1, b = 6 and c = 4Discriminant D is given by:D = (b2  4ac)(6)2  4 × 1 × 4= 36  16= 20 > 0Hence, the roots of the equation are real.Roots α and β are given by:α = b + D2a = (6) + 202 × 1 = 6 + 252 = 2(3 + 5)2 (3 + 5)β = b  D2a =(6)  202 × 1 = 6  252 = 2(3  5)2 = (3  5)Thus, the roots of the equation are (3 + 25) and (3  25).

Page No 193:

Question 4:

Given:x2  6x + 4 = 0On comparing it with ax2 + bx + c = 0, we get:a = 1, b = 6 and c = 4Discriminant D is given by:D = (b2  4ac)(6)2  4 × 1 × 4= 36  16= 20 > 0Hence, the roots of the equation are real.Roots α and β are given by:α = b + D2a = (6) + 202 × 1 = 6 + 252 = 2(3 + 5)2 (3 + 5)β = b  D2a =(6)  202 × 1 = 6  252 = 2(3  5)2 = (3  5)Thus, the roots of the equation are (3 + 25) and (3  25).

Answer:

The given equation is 2x2+x-4=0.

Comparing it with ax2+bx+c=0, we get

a = 2, b = 1 and c = −4

∴ Discriminant, D = b2-4ac=12-4×2×-4=1+32=33>0

So, the given equation has real roots.

Now, D=33

 α=-b+D2a=-1+332×2=-1+334β=-b-D2a=-1-332×2=-1-334

Hence, -1+334 and -1-334 are the roots of the given equation.

Page No 193:

Question 5:

The given equation is 2x2+x-4=0.

Comparing it with ax2+bx+c=0, we get

a = 2, b = 1 and c = −4

∴ Discriminant, D = b2-4ac=12-4×2×-4=1+32=33>0

So, the given equation has real roots.

Now, D=33

 α=-b+D2a=-1+332×2=-1+334β=-b-D2a=-1-332×2=-1-334

Hence, -1+334 and -1-334 are the roots of the given equation.

Answer:

Given:25x2 + 30x + 7 = 0On comparing it with ax2 + bx + c = 0, we get:a = 25, b = 30 and c = 7Discriminant D is given by:D = (b2  4ac)= 302  4 × 25 × 7= 900  700= 200= 200 > 0Hence, the roots of the equation are real.Roots α and β are given by:α = b + D2a = 30 + 2002 × 25 = 30 + 10250 = 10(3 + 2)50 = (3 + 2)5β = b  D2a = 30  2002 × 25 = 30  10250 = 10(3  2)50 = (3  2)5Thus, the roots of the equation are (3 + 2)5 and (3  2)5.

Page No 193:

Question 6:

Given:25x2 + 30x + 7 = 0On comparing it with ax2 + bx + c = 0, we get:a = 25, b = 30 and c = 7Discriminant D is given by:D = (b2  4ac)= 302  4 × 25 × 7= 900  700= 200= 200 > 0Hence, the roots of the equation are real.Roots α and β are given by:α = b + D2a = 30 + 2002 × 25 = 30 + 10250 = 10(3 + 2)50 = (3 + 2)5β = b  D2a = 30  2002 × 25 = 30  10250 = 10(3  2)50 = (3  2)5Thus, the roots of the equation are (3 + 2)5 and (3  2)5.

Answer:

Given:16x2 = 24x + 1⇒ 16x2  24x  1 = 0On comparing it with ax2 + bx + c = 0a = 16, b = 24 and c = 1Discriminant D is given by:D = (b2  4ac)(24)2  4 × 16 × (1)= 576 + (64)= 640 > 0Hence, the roots of the equation are real,Roots α and β are given by:α = b + D2a (24) + 6402 × 16 = 24 + 81032 = 8(3 + 10)32 = (3 + 10)4β = b  D2a = (24)  6402 × 16 = 24  81032 = 8(3  10)32 = (3  10)4Thus, the roots of the equation are (3 + 10)4 and  (3  10)4.

Page No 193:

Question 7:

Given:16x2 = 24x + 1⇒ 16x2  24x  1 = 0On comparing it with ax2 + bx + c = 0a = 16, b = 24 and c = 1Discriminant D is given by:D = (b2  4ac)(24)2  4 × 16 × (1)= 576 + (64)= 640 > 0Hence, the roots of the equation are real,Roots α and β are given by:α = b + D2a (24) + 6402 × 16 = 24 + 81032 = 8(3 + 10)32 = (3 + 10)4β = b  D2a = (24)  6402 × 16 = 24  81032 = 8(3  10)32 = (3  10)4Thus, the roots of the equation are (3 + 10)4 and  (3  10)4.

Answer:

Given:15x2  28 = x⇒ 15x2  x  28 = 0On comparing it with ax2 + bx + c = 0, we get:a = 15, b = 1 and c = 28Discriminant D is given by:D = (b2  4ac)(1)2  4 × 15 × (28)= 1  (1680)= 1 + 1680= 1681= 1681 > 0Hence, the roots of the equation are real.Roots α and β are given by:α = b + D2a = (1) + 16812 × 15 = 1 + 4130 = 4230 = 75β = b  D2a = (1)  16812 × 15 = 1  4130 = 4030 = 43Thus, the roots of the equation are 75 and 43.

Page No 193:

Question 8:

Given:15x2  28 = x⇒ 15x2  x  28 = 0On comparing it with ax2 + bx + c = 0, we get:a = 15, b = 1 and c = 28Discriminant D is given by:D = (b2  4ac)(1)2  4 × 15 × (28)= 1  (1680)= 1 + 1680= 1681= 1681 > 0Hence, the roots of the equation are real.Roots α and β are given by:α = b + D2a = (1) + 16812 × 15 = 1 + 4130 = 4230 = 75β = b  D2a = (1)  16812 × 15 = 1  4130 = 4030 = 43Thus, the roots of the equation are 75 and 43.

Answer:

The given equation is 2x2-22x+1=0.

Comparing it with ax2+bx+c=0, we get

a = 2, b-22 and c = 1

∴ Discriminant, D = b2-4ac=-222-4×2×1=8-8=0

So, the given equation has real roots.

Now, D=0

 α=-b+D2a=--22+02×2=224=22β=-b-D2a=--22-02×2=224=22

Hence, 22 is the repeated root of the given equation.

Page No 193:

Question 9:

The given equation is 2x2-22x+1=0.

Comparing it with ax2+bx+c=0, we get

a = 2, b-22 and c = 1

∴ Discriminant, D = b2-4ac=-222-4×2×1=8-8=0

So, the given equation has real roots.

Now, D=0

 α=-b+D2a=--22+02×2=224=22β=-b-D2a=--22-02×2=224=22

Hence, 22 is the repeated root of the given equation.

Answer:

The given equation is 2x2+7x+52=0.

Comparing it with ax2+bx+c=0, we get

a = 2, b = 7 and c = 52

∴ Discriminant, D = b2-4ac=72-4×2×52=49-40=9>0

So, the given equation has real roots.

Now, D=9=3

 α=-b+D2a=-7+32×2=-422=-2β=-b-D2a=-7-32×2=-1022=-522

Hence, -2 and -522 are the roots of the given equation.

Page No 193:

Question 10:

The given equation is 2x2+7x+52=0.

Comparing it with ax2+bx+c=0, we get

a = 2, b = 7 and c = 52

∴ Discriminant, D = b2-4ac=72-4×2×52=49-40=9>0

So, the given equation has real roots.

Now, D=9=3

 α=-b+D2a=-7+32×2=-422=-2β=-b-D2a=-7-32×2=-1022=-522

Hence, -2 and -522 are the roots of the given equation.

Answer:

Given:3x2 + 10x  83 = 0On comparing it with ax2 + bx + c = 0, we get:a = 3, b = 10 and c = 83Discriminant D is given by:D = (b2  4ac)= (10)2  4 × 3 × (83)= 100 + 96= 196 > 0Hence, the roots of the equation are real.Roots α and β are given by: α b + D2a = 10 + 19623 = 10 + 1423 = 423 = 23 = 23 × 33 = 233β = b  D2a = 10  19623 = 10  1423 = 2423 = 123 = 123 × 33 = 1233 = 43Thus, the roots of the equation are 233 and 43.

Page No 193:

Question 11:

Given:3x2 + 10x  83 = 0On comparing it with ax2 + bx + c = 0, we get:a = 3, b = 10 and c = 83Discriminant D is given by:D = (b2  4ac)= (10)2  4 × 3 × (83)= 100 + 96= 196 > 0Hence, the roots of the equation are real.Roots α and β are given by: α b + D2a = 10 + 19623 = 10 + 1423 = 423 = 23 = 23 × 33 = 233β = b  D2a = 10  19623 = 10  1423 = 2423 = 123 = 123 × 33 = 1233 = 43Thus, the roots of the equation are 233 and 43.

Answer:

The given equation is 3x2-22x-23=0.

Comparing it with ax2+bx+c=0, we get

a = 3, b-22 and c = -23

∴ Discriminant, D = b2-4ac=-222-4×3×-23=8+24=32>0

So, the given equation has real roots.

Now, D=32=42

 α=-b+D2a=--22+422×3=6223=6β=-b-D2a=--22-422×3=-2223=-63

Hence, 6 and -63 are the roots of the given equation.

Page No 193:

Question 12:

The given equation is 3x2-22x-23=0.

Comparing it with ax2+bx+c=0, we get

a = 3, b-22 and c = -23

∴ Discriminant, D = b2-4ac=-222-4×3×-23=8+24=32>0

So, the given equation has real roots.

Now, D=32=42

 α=-b+D2a=--22+422×3=6223=6β=-b-D2a=--22-422×3=-2223=-63

Hence, 6 and -63 are the roots of the given equation.

Answer:

The given equation is 2x2+63x-60=0.

Comparing it with ax2+bx+c=0, we get

a = 2, b63 and c = -60

∴ Discriminant, D = b2-4ac=632-4×2×-60=108+480=588>0

So, the given equation has real roots.

Now, D=588=143

 α=-b+D2a=-63+1432×2=834=23β=-b-D2a=-63-1432×2=-2034=-53

Hence, 23 and -53 are the roots of the given equation.

Page No 193:

Question 13:

The given equation is 2x2+63x-60=0.

Comparing it with ax2+bx+c=0, we get

a = 2, b63 and c = -60

∴ Discriminant, D = b2-4ac=632-4×2×-60=108+480=588>0

So, the given equation has real roots.

Now, D=588=143

 α=-b+D2a=-63+1432×2=834=23β=-b-D2a=-63-1432×2=-2034=-53

Hence, 23 and -53 are the roots of the given equation.

Answer:

The given equation is 43x2+5x-23=0.

Comparing it with ax2+bx+c=0, we get

a = 43, b = 5 and c = -23

∴ Discriminant, D = b2-4ac=52-4×43×-23=25+96=121>0

So, the given equation has real roots.

Now, D=121=11

 α=-b+D2a=-5+112×43=683=34β=-b-D2a=-5-112×43=-1683=-233

Hence, 34 and -233 are the roots of the given equation.

Page No 193:

Question 14:

The given equation is 43x2+5x-23=0.

Comparing it with ax2+bx+c=0, we get

a = 43, b = 5 and c = -23

∴ Discriminant, D = b2-4ac=52-4×43×-23=25+96=121>0

So, the given equation has real roots.

Now, D=121=11

 α=-b+D2a=-5+112×43=683=34β=-b-D2a=-5-112×43=-1683=-233

Hence, 34 and -233 are the roots of the given equation.

Answer:

The given equation is 3x2-26x+2=0.

Comparing it with ax2+bx+c=0, we get

a = 3, b-26 and c = 2

∴ Discriminant, D = b2-4ac=-262-4×3×2=24-24=0

So, the given equation has real roots.

Now, D=0

 α=-b+D2a=--26+02×3=266=63β=-b-D2a=--26-02×3=266=63

Hence, 63 is the repeated root of the given equation.

Page No 193:

Question 15:

The given equation is 3x2-26x+2=0.

Comparing it with ax2+bx+c=0, we get

a = 3, b-26 and c = 2

∴ Discriminant, D = b2-4ac=-262-4×3×2=24-24=0

So, the given equation has real roots.

Now, D=0

 α=-b+D2a=--26+02×3=266=63β=-b-D2a=--26-02×3=266=63

Hence, 63 is the repeated root of the given equation.

Answer:

The given equation is 23x2-5x+3=0.

Comparing it with ax2+bx+c=0, we get

a = 23, b-5 and c = 3

∴ Discriminant, D = b2-4ac=-52-4×23×3=25-24=1>0

So, the given equation has real roots.

Now, D=1=1

 α=-b+D2a=--5+12×23=643=32β=-b-D2a=--5-12×23=443=33

Hence, 32 and 33 are the roots of the given equation.

Page No 193:

Question 16:

The given equation is 23x2-5x+3=0.

Comparing it with ax2+bx+c=0, we get

a = 23, b-5 and c = 3

∴ Discriminant, D = b2-4ac=-52-4×23×3=25-24=1>0

So, the given equation has real roots.

Now, D=1=1

 α=-b+D2a=--5+12×23=643=32β=-b-D2a=--5-12×23=443=33

Hence, 32 and 33 are the roots of the given equation.

Answer:

The given equation is x2+x+2=0.

Comparing it with ax2+bx+c=0, we get

a = 1, b = 1 and c = 2

∴ Discriminant, D = b2-4ac=12-4×1×2=1-8=-7<0

Hence, the given equation has no real roots (or real roots does not exist).

Page No 193:

Question 17:

The given equation is x2+x+2=0.

Comparing it with ax2+bx+c=0, we get

a = 1, b = 1 and c = 2

∴ Discriminant, D = b2-4ac=12-4×1×2=1-8=-7<0

Hence, the given equation has no real roots (or real roots does not exist).

Answer:

The given equation is 2x2+ax-a2=0.

Comparing it with Ax2+Bx+C=0, we get

A = 2, B = a and C = -a2

∴ Discriminant, D = B2-4AC=a2-4×2×-a2=a2+8a2=9a20

So, the given equation has real roots.

Now, D=9a2=3a

 α=-B+D2A=-a+3a2×2=2a4=a2β=-B-D2A=-a-3a2×2=-4a4=-a

Hence, a2 and -a are the roots of the given equation.

Page No 193:

Question 18:

The given equation is 2x2+ax-a2=0.

Comparing it with Ax2+Bx+C=0, we get

A = 2, B = a and C = -a2

∴ Discriminant, D = B2-4AC=a2-4×2×-a2=a2+8a2=9a20

So, the given equation has real roots.

Now, D=9a2=3a

 α=-B+D2A=-a+3a2×2=2a4=a2β=-B-D2A=-a-3a2×2=-4a4=-a

Hence, a2 and -a are the roots of the given equation.

Answer:

The given equation is x2-3+1x+3=0.

Comparing it with ax2+bx+c=0, we get

a = 1, b-3+1 and c = 3

∴ Discriminant, D = b2-4ac=-3+12-4×1×3=3+1+23-43=3-23+1=3-12>0

So, the given equation has real roots.

Now, D=3-12=3-1

 α=-b+D2a=--3+1+3-12×1=3+1+3-12=232=3β=-b-D2a=--3+1-3-12×1=3+1-3+12=22=1

Hence, 3 and 1 are the roots of the given equation.

Page No 193:

Question 19:

The given equation is x2-3+1x+3=0.

Comparing it with ax2+bx+c=0, we get

a = 1, b-3+1 and c = 3

∴ Discriminant, D = b2-4ac=-3+12-4×1×3=3+1+23-43=3-23+1=3-12>0

So, the given equation has real roots.

Now, D=3-12=3-1

 α=-b+D2a=--3+1+3-12×1=3+1+3-12=232=3β=-b-D2a=--3+1-3-12×1=3+1-3+12=22=1

Hence, 3 and 1 are the roots of the given equation.

Answer:

The given equation is 2x2+53x+6=0.

Comparing it with ax2+bx+c=0, we get

a = 2, b53 and c = 6

∴ Discriminant, D = b2-4ac=532-4×2×6=75-48=27>0

So, the given equation has real roots.

Now, D=27=33

 α=-b+D2a=-53+332×2=-234=-32β=-b-D2a=-53-332×2=-834=-23

Hence, -32 and -23 are the roots of the given equation.

Page No 193:

Question 20:

The given equation is 2x2+53x+6=0.

Comparing it with ax2+bx+c=0, we get

a = 2, b53 and c = 6

∴ Discriminant, D = b2-4ac=532-4×2×6=75-48=27>0

So, the given equation has real roots.

Now, D=27=33

 α=-b+D2a=-53+332×2=-234=-32β=-b-D2a=-53-332×2=-834=-23

Hence, -32 and -23 are the roots of the given equation.

Answer:

The given equation is 3x2-2x+2=0.

Comparing it with ax2+bx+c=0, we get

a = 3, b = −2 and c = 2

∴ Discriminant, D = b2-4ac=-22-4×3×2=4-24=-20<0

Hence, the given equation has no real roots (or real roots does not exist).

Page No 193:

Question 21:

The given equation is 3x2-2x+2=0.

Comparing it with ax2+bx+c=0, we get

a = 3, b = −2 and c = 2

∴ Discriminant, D = b2-4ac=-22-4×3×2=4-24=-20<0

Hence, the given equation has no real roots (or real roots does not exist).

Answer:

The given equation is

x+1x=3,  x0x2+1x=3x2+1=3xx2-3x+1=0

This equation is of the form ax2+bx+c=0, where a = 1, b = −3 and c = 1.

∴ Discriminant, D = b2-4ac=-32-4×1×1=9-4=5>0

So, the given equation has real roots.

Now, D=5

 α=-b+D2a=--3+52×1=3+52β=-b-D2a=--3-52×1=3-52

Hence, 3+52 and 3-52 are the roots of the given equation.

Page No 193:

Question 22:

The given equation is

x+1x=3,  x0x2+1x=3x2+1=3xx2-3x+1=0

This equation is of the form ax2+bx+c=0, where a = 1, b = −3 and c = 1.

∴ Discriminant, D = b2-4ac=-32-4×1×1=9-4=5>0

So, the given equation has real roots.

Now, D=5

 α=-b+D2a=--3+52×1=3+52β=-b-D2a=--3-52×1=3-52

Hence, 3+52 and 3-52 are the roots of the given equation.

Answer:

The given equation is

1x-1x-2=3,  x0, 2x-2-xxx-2=3-2x2-2x=3-2=3x2-6x

3x2-6x+2=0

This equation is of the form ax2+bx+c=0, where a = 3, b = −6 and c = 2.

∴ Discriminant, D = b2-4ac=-62-4×3×2=36-24=12>0

So, the given equation has real roots.

Now, D=12=23

 α=-b+D2a=--6+232×3=6+236=3+33β=-b-D2a=--6-232×3=6-236=3-33

Hence, 3+33 and 3-33 are the roots of the given equation.

Page No 193:

Question 23:

The given equation is

1x-1x-2=3,  x0, 2x-2-xxx-2=3-2x2-2x=3-2=3x2-6x

3x2-6x+2=0

This equation is of the form ax2+bx+c=0, where a = 3, b = −6 and c = 2.

∴ Discriminant, D = b2-4ac=-62-4×3×2=36-24=12>0

So, the given equation has real roots.

Now, D=12=23

 α=-b+D2a=--6+232×3=6+236=3+33β=-b-D2a=--6-232×3=6-236=3-33

Hence, 3+33 and 3-33 are the roots of the given equation.

Answer:

The given equation is

x-1x=3,  x0x2-1x=3x2-1=3xx2-3x-1=0

This equation is of the form ax2+bx+c=0, where a = 1, b = −3 and c = −1.

∴ Discriminant, D = b2-4ac=-32-4×1×-1=9+4=13>0

So, the given equation has real roots.

Now, D=13

 α=-b+D2a=--3+132×1=3+132β=-b-D2a=--3-132×1=3-132

Hence, 3+132 and 3-132 are the roots of the given equation.

Page No 193:

Question 24:

The given equation is

x-1x=3,  x0x2-1x=3x2-1=3xx2-3x-1=0

This equation is of the form ax2+bx+c=0, where a = 1, b = −3 and c = −1.

∴ Discriminant, D = b2-4ac=-32-4×1×-1=9+4=13>0

So, the given equation has real roots.

Now, D=13

 α=-b+D2a=--3+132×1=3+132β=-b-D2a=--3-132×1=3-132

Hence, 3+132 and 3-132 are the roots of the given equation.

Answer:

The given equation is

mnx2+nm=1-2xm2x2+n2mn=1-2xm2x2+n2=mn-2mnxm2x2+2mnx+n2-mn=0

This equation is of the form ax2+bx+c=0, where a = m2, b = 2mn and c = n2-mn.

∴ Discriminant, D = b2-4ac=2mn2-4×m2×n2-mn=4m2n2-4m2n2+4m3n=4m3n>0

So, the given equation has real roots.

Now, D=4m3n=2mmn

 α=-b+D2a=-2mn+2mmn2×m2=2m-n+mn2m2=-n+mnmβ=-b-D2a=-2mn-2mmn2×m2=-2mn+mn2m2=-n-mnm

Hence, -n+mnm and -n-mnm are the roots of the given equation.

Page No 193:

Question 25:

The given equation is

mnx2+nm=1-2xm2x2+n2mn=1-2xm2x2+n2=mn-2mnxm2x2+2mnx+n2-mn=0

This equation is of the form ax2+bx+c=0, where a = m2, b = 2mn and c = n2-mn.

∴ Discriminant, D = b2-4ac=2mn2-4×m2×n2-mn=4m2n2-4m2n2+4m3n=4m3n>0

So, the given equation has real roots.

Now, D=4m3n=2mmn

 α=-b+D2a=-2mn+2mmn2×m2=2m-n+mn2m2=-n+mnmβ=-b-D2a=-2mn-2mmn2×m2=-2mn+mn2m2=-n-mnm

Hence, -n+mnm and -n-mnm are the roots of the given equation.

Answer:

The given equation is 36x2-12ax+a2-b2=0.

Comparing it with Ax2+Bx+C=0, we get

A = 36, B-12a and C = a2-b2

∴ Discriminant, D = B2-4AC=-12a2-4×36×a2-b2=144a2-144a2+144b2=144b2>0

So, the given equation has real roots.

Now, D=144b2=12b

 α=-B+D2A=--12a+12b2×36=12a+b72=a+b6β=-B-D2A=--12a-12b2×36=12a-b72=a-b6

Hence, a+b6 and a-b6 are the roots of the given equation.

Page No 193:

Question 26:

The given equation is 36x2-12ax+a2-b2=0.

Comparing it with Ax2+Bx+C=0, we get

A = 36, B-12a and C = a2-b2

∴ Discriminant, D = B2-4AC=-12a2-4×36×a2-b2=144a2-144a2+144b2=144b2>0

So, the given equation has real roots.

Now, D=144b2=12b

 α=-B+D2A=--12a+12b2×36=12a+b72=a+b6β=-B-D2A=--12a-12b2×36=12a-b72=a-b6

Hence, a+b6 and a-b6 are the roots of the given equation.

Answer:

Given: x2  2ax + (a2  b2) = 0On comparing it with Ax2 + Bx + C = 0, we get:A = 1, B = 2a and C = (a2  b2)Discriminant D is given by: D B2  4AC    (2a)2  4 × 1 × (a2  b2)= 4a2  4a2 + 4b2  = 4b2 > 0Hence, the roots of the equation are real.Roots α and β are given by:α b + D2a = (2a) + 4b22 × 1 = 2a + 2b2 = 2(a + b)2 = (a + b)β b  D2a = (2a)  4b22 × 1 = 2a  2b2 = 2(a  b)2 = (a  b)Hence, the roots of the equation are (a + b) and (ab).

Page No 193:

Question 27:

Given: x2  2ax + (a2  b2) = 0On comparing it with Ax2 + Bx + C = 0, we get:A = 1, B = 2a and C = (a2  b2)Discriminant D is given by: D B2  4AC    (2a)2  4 × 1 × (a2  b2)= 4a2  4a2 + 4b2  = 4b2 > 0Hence, the roots of the equation are real.Roots α and β are given by:α b + D2a = (2a) + 4b22 × 1 = 2a + 2b2 = 2(a + b)2 = (a + b)β b  D2a = (2a)  4b22 × 1 = 2a  2b2 = 2(a  b)2 = (a  b)Hence, the roots of the equation are (a + b) and (ab).

Answer:

The given equation is x2-2ax-4b2-a2=0.

Comparing it with Ax2+Bx+C=0, we get

A = 1, B-2a and C = -4b2-a2

∴ Discriminant, D = B2-4AC=-2a2-4×1×-4b2-a2=4a2+16b2-4a2=16b2>0

So, the given equation has real roots.

Now, D=16b2=4b

 α=-B+D2A=--2a+4b2×1=2a+2b2=a+2bβ=-B-D2A=--2a-4b2×1=2a-2b2=a-2b

Hence, a+2b and a-2b are the roots of the given equation.



Page No 194:

Question 28:

The given equation is x2-2ax-4b2-a2=0.

Comparing it with Ax2+Bx+C=0, we get

A = 1, B-2a and C = -4b2-a2

∴ Discriminant, D = B2-4AC=-2a2-4×1×-4b2-a2=4a2+16b2-4a2=16b2>0

So, the given equation has real roots.

Now, D=16b2=4b

 α=-B+D2A=--2a+4b2×1=2a+2b2=a+2bβ=-B-D2A=--2a-4b2×1=2a-2b2=a-2b

Hence, a+2b and a-2b are the roots of the given equation.

Answer:

The given equation is x2+6x-a2+2a-8=0.

Comparing it with Ax2+Bx+C=0, we get

A = 1, B = 6 and C = -a2+2a-8

∴ Discriminant, D = B2-4AC=62-4×1×-a2+2a-8=36+4a2+8a-32=4a2+8a+4=4a2+2a+1=4a+12>0

So, the given equation has real roots.

Now, D=4a+12=2a+1

 α=-B+D2A=-6+2a+12×1=2a-42=a-2β=-B-D2A=-6-2a+12×1=-2a-82=-a-4=-a+4

Hence, a-2 and -a+4 are the roots of the given equation.

Page No 194:

Question 29:

The given equation is x2+6x-a2+2a-8=0.

Comparing it with Ax2+Bx+C=0, we get

A = 1, B = 6 and C = -a2+2a-8

∴ Discriminant, D = B2-4AC=62-4×1×-a2+2a-8=36+4a2+8a-32=4a2+8a+4=4a2+2a+1=4a+12>0

So, the given equation has real roots.

Now, D=4a+12=2a+1

 α=-B+D2A=-6+2a+12×1=2a-42=a-2β=-B-D2A=-6-2a+12×1=-2a-82=-a-4=-a+4

Hence, a-2 and -a+4 are the roots of the given equation.

Answer:

The given equation is x2+5x-a2+a-6=0.

Comparing it with Ax2+Bx+C=0, we get

A = 1, B = 5 and C = -a2+a-6

∴ Discriminant, D = B2-4AC=52-4×1×-a2+a-6=25+4a2+4a-24=4a2+4a+1=2a+12>0

So, the given equation has real roots.

Now, D=2a+12=2a+1

 α=-B+D2A=-5+2a+12×1=2a-42=a-2β=-B-D2A=-5-2a+12×1=-2a-62=-a-3=-a+3

Hence, a-2 and -a+3 are the roots of the given equation.

Page No 194:

Question 30:

The given equation is x2+5x-a2+a-6=0.

Comparing it with Ax2+Bx+C=0, we get

A = 1, B = 5 and C = -a2+a-6

∴ Discriminant, D = B2-4AC=52-4×1×-a2+a-6=25+4a2+4a-24=4a2+4a+1=2a+12>0

So, the given equation has real roots.

Now, D=2a+12=2a+1

 α=-B+D2A=-5+2a+12×1=2a-42=a-2β=-B-D2A=-5-2a+12×1=-2a-62=-a-3=-a+3

Hence, a-2 and -a+3 are the roots of the given equation.

Answer:

The given equation is x2-4ax-b2+4a2=0.

Comparing it with Ax2+Bx+C=0, we get

A = 1, B = −4a and C = -b2+4a2

∴ Discriminant, D = B2-4AC=-4a2-4×1×-b2+4a2=16a2+4b2-16a2=4b2>0

So, the given equation has real roots.

Now, D=4b2=2b

 α=-B+D2A=--4a+2b2×1=4a+2b2=2a+bβ=-B-D2A=--4a-2b2×1=4a-2b2=2a-b

Hence, 2a+b and 2a-b are the roots of the given equation.

Page No 194:

Question 31:

The given equation is x2-4ax-b2+4a2=0.

Comparing it with Ax2+Bx+C=0, we get

A = 1, B = −4a and C = -b2+4a2

∴ Discriminant, D = B2-4AC=-4a2-4×1×-b2+4a2=16a2+4b2-16a2=4b2>0

So, the given equation has real roots.

Now, D=4b2=2b

 α=-B+D2A=--4a+2b2×1=4a+2b2=2a+bβ=-B-D2A=--4a-2b2×1=4a-2b2=2a-b

Hence, 2a+b and 2a-b are the roots of the given equation.

Answer:

The given equation is 4x2-4a2x+a4-b4=0.

Comparing it with Ax2+Bx+C=0, we get

A = 4, B = −4a2 and C = a4-b4

∴ Discriminant, D = B2-4AC=-4a22-4×4×a4-b4=16a4-16a4+16b4=16b4>0

So, the given equation has real roots.

Now, D=16b4=4b2

 α=-B+D2A=--4a2+4b22×4=4a2+b28=a2+b22β=-B-D2A=--4a2-4b22×4=4a2-b28=a2-b22

Hence, 12a2+b2 and 12a2-b2 are the roots of the given equation.

Page No 194:

Question 32:

The given equation is 4x2-4a2x+a4-b4=0.

Comparing it with Ax2+Bx+C=0, we get

A = 4, B = −4a2 and C = a4-b4

∴ Discriminant, D = B2-4AC=-4a22-4×4×a4-b4=16a4-16a4+16b4=16b4>0

So, the given equation has real roots.

Now, D=16b4=4b2

 α=-B+D2A=--4a2+4b22×4=4a2+b28=a2+b22β=-B-D2A=--4a2-4b22×4=4a2-b28=a2-b22

Hence, 12a2+b2 and 12a2-b2 are the roots of the given equation.

Answer:

The given equation is 4x2+4bx-a2-b2=0.

Comparing it with Ax2+Bx+C=0, we get

A = 4, B = 4b and C = -a2-b2

∴ Discriminant, D = B2-4AC=4b2-4×4×-a2-b2=16b2+16a2-16b2=16a2>0

So, the given equation has real roots.

Now, D=16a2=4a

 α=-B+D2A=-4b+4a2×4=4a-b8=a-b2β=-B-D2A=-4b-4a2×4=-4a+b8=-a+b2

Hence, 12a-b and -12a+b are the roots of the given equation.

Page No 194:

Question 33:

The given equation is 4x2+4bx-a2-b2=0.

Comparing it with Ax2+Bx+C=0, we get

A = 4, B = 4b and C = -a2-b2

∴ Discriminant, D = B2-4AC=4b2-4×4×-a2-b2=16b2+16a2-16b2=16a2>0

So, the given equation has real roots.

Now, D=16a2=4a

 α=-B+D2A=-4b+4a2×4=4a-b8=a-b2β=-B-D2A=-4b-4a2×4=-4a+b8=-a+b2

Hence, 12a-b and -12a+b are the roots of the given equation.

Answer:

The given equation is x2-2b-1x+b2-b-20=0.

Comparing it with Ax2+Bx+C=0, we get

A = 1, B = -2b-1 and C = b2-b-20

∴ Discriminant, D = B2-4AC=-2b-12-4×1×b2-b-20=4b2-4b+1-4b2+4b+80=81>0

So, the given equation has real roots.

Now, D=81=9

 α=-B+D2A=--2b-1+92×1=2b+82=b+4β=-B-D2A=--2b-1-92×1=2b-102=b-5

Hence, b+4 and b-5 are the roots of the given equation.

Page No 194:

Question 34:

The given equation is x2-2b-1x+b2-b-20=0.

Comparing it with Ax2+Bx+C=0, we get

A = 1, B = -2b-1 and C = b2-b-20

∴ Discriminant, D = B2-4AC=-2b-12-4×1×b2-b-20=4b2-4b+1-4b2+4b+80=81>0

So, the given equation has real roots.

Now, D=81=9

 α=-B+D2A=--2b-1+92×1=2b+82=b+4β=-B-D2A=--2b-1-92×1=2b-102=b-5

Hence, b+4 and b-5 are the roots of the given equation.

Answer:

Given:3a2x2 + 8abx + 4b2 = 0   On comparing it with Ax2 + Bx + C = 0, we get:A = 3a2, B = 8ab and C = 4b2   Discriminant D is given by:D = (B2  4AC)             = (8ab)2  4 × 3a2 × 4b2     = 16a2b2 > 0Hence, the roots of the equation are real.Roots α and β are given by:α b + D2a = 8ab + 16a2b22 × 3a2 = 8ab + 4ab6a2 = 4ab6a2 = 2b3aβ = b  D2a = 8ab  16a2b22 × 3a2 = 8ab  4ab6a2 = 12ab6a2 = 2baThus, the roots of the equation are 2b3a and 2ba.

Page No 194:

Question 35:

Given:3a2x2 + 8abx + 4b2 = 0   On comparing it with Ax2 + Bx + C = 0, we get:A = 3a2, B = 8ab and C = 4b2   Discriminant D is given by:D = (B2  4AC)             = (8ab)2  4 × 3a2 × 4b2     = 16a2b2 > 0Hence, the roots of the equation are real.Roots α and β are given by:α b + D2a = 8ab + 16a2b22 × 3a2 = 8ab + 4ab6a2 = 4ab6a2 = 2b3aβ = b  D2a = 8ab  16a2b22 × 3a2 = 8ab  4ab6a2 = 12ab6a2 = 2baThus, the roots of the equation are 2b3a and 2ba.

Answer:

The given equation is a2b2x2-4b4-3a4x-12a2b2=0.

Comparing it with Ax2+Bx+C=0, we get

A = a2b2, B = -4b4-3a4 and C = -12a2b2

∴ Discriminant, D = B2-4AC=-4b4-3a42-4×a2b2×-12a2b2=16b8-24a4b4+9a8+48a4b4=16b8+24a4b4+9a8=4b4+3a42>0

So, the given equation has real roots.

Now, D=4b4+3a42=4b4+3a4

 α=-B+D2A=--4b4-3a4+4b4+3a42×a2b2=8b42a2b2=4b2a2β=-B-D2A==--4b4-3a4-4b4+3a42×a2b2=-6a42a2b2=-3a2b2

Hence, 4b2a2 and -3a2b2 are the roots of the given equation.

Page No 194:

Question 36:

The given equation is a2b2x2-4b4-3a4x-12a2b2=0.

Comparing it with Ax2+Bx+C=0, we get

A = a2b2, B = -4b4-3a4 and C = -12a2b2

∴ Discriminant, D = B2-4AC=-4b4-3a42-4×a2b2×-12a2b2=16b8-24a4b4+9a8+48a4b4=16b8+24a4b4+9a8=4b4+3a42>0

So, the given equation has real roots.

Now, D=4b4+3a42=4b4+3a4

 α=-B+D2A=--4b4-3a4+4b4+3a42×a2b2=8b42a2b2=4b2a2β=-B-D2A==--4b4-3a4-4b4+3a42×a2b2=-6a42a2b2=-3a2b2

Hence, 4b2a2 and -3a2b2 are the roots of the given equation.

Answer:

Given:12abx2  (9a2  8b2)x  6ab = 0     On comparing it with Ax2 + Bx + C = 0, we get:     = 12ab, B = (9a2  8b2) and C = 6abDiscriminant D is given by: D B2  4AC  = [(9a2  8b2)]2  4 × 12ab × (6ab)     = 81a4  144a2b2 + 64b4 + 288a2b2   = 81a4 + 144a2b2 + 64b4   = (9a2 + 8b2)2 > 0Hence, the roots of the equation are equal.Roots α and β are given by:α B + D2A = [(9a2  8b2)] + (9a2 + 8b2)22 × 12ab = 9a2  8b2 + 9a2 + 8b224ab = 18a224ab = 3a4bβ B  D2A = [(9a2  8b2)]  (9a2+8b2)22 × 12ab = 9a2  8b2  9a2  8b224ab = 16b224ab = 2b3aThus, the roots of the equation are 3a4b and 2b3a.



Page No 201:

Question 1:

Given:12abx2  (9a2  8b2)x  6ab = 0     On comparing it with Ax2 + Bx + C = 0, we get:     = 12ab, B = (9a2  8b2) and C = 6abDiscriminant D is given by: D B2  4AC  = [(9a2  8b2)]2  4 × 12ab × (6ab)     = 81a4  144a2b2 + 64b4 + 288a2b2   = 81a4 + 144a2b2 + 64b4   = (9a2 + 8b2)2 > 0Hence, the roots of the equation are equal.Roots α and β are given by:α B + D2A = [(9a2  8b2)] + (9a2 + 8b2)22 × 12ab = 9a2  8b2 + 9a2 + 8b224ab = 18a224ab = 3a4bβ B  D2A = [(9a2  8b2)]  (9a2+8b2)22 × 12ab = 9a2  8b2  9a2  8b224ab = 16b224ab = 2b3aThus, the roots of the equation are 3a4b and 2b3a.

Answer:

(i) The given equation is 2x2-8x+5=0.

This is of the form ax2+bx+c=0, where a = 2, b = −8 and c = 5.

∴ Discriminant, D = b2-4ac=-82-4×2×5=64-40=24>0

Hence, the given equation has real and unequal roots.

(ii) The given equation is 3x2-26x+2=0.

This is of the form ax2+bx+c=0, where a = 3, b-26 and c = 2.

∴ Discriminant, D = b2-4ac=-262-4×3×2=24-24=0

Hence, the given equation has real and equal roots.

(iii) The given equation is 5x2-4x+1=0.

This is of the form ax2+bx+c=0, where a = 5, b = −4 and c = 1.

∴ Discriminant, D = b2-4ac=-42-4×5×1=16-20=-4<0

Hence, the given equation has no real roots.

(iv) The given equation is

5xx-2+6=05x2-10x+6=0

This is of the form ax2+bx+c=0, where a = 5, b = −10 and c = 6.

∴ Discriminant, D = b2-4ac=-102-4×5×6=100-120=-20<0

Hence, the given equation has no real roots.

(v) The given equation is 12x2-415x+5=0.

This is of the form ax2+bx+c=0, where a = 12, b-415 and c = 5.

∴ Discriminant, D = b2-4ac=-4152-4×12×5=240-240=0

Hence, the given equation has real and equal roots.

(vi) The given equation is x2-x+2=0.

This is of the form ax2+bx+c=0, where a = 1, b = −1 and c = 2.

∴ Discriminant, D = b2-4ac=-12-4×1×2=1-8=-7<0

Hence, the given equation has no real roots.

Page No 201:

Question 2:

(i) The given equation is 2x2-8x+5=0.

This is of the form ax2+bx+c=0, where a = 2, b = −8 and c = 5.

∴ Discriminant, D = b2-4ac=-82-4×2×5=64-40=24>0

Hence, the given equation has real and unequal roots.

(ii) The given equation is 3x2-26x+2=0.

This is of the form ax2+bx+c=0, where a = 3, b-26 and c = 2.

∴ Discriminant, D = b2-4ac=-262-4×3×2=24-24=0

Hence, the given equation has real and equal roots.

(iii) The given equation is 5x2-4x+1=0.

This is of the form ax2+bx+c=0, where a = 5, b = −4 and c = 1.

∴ Discriminant, D = b2-4ac=-42-4×5×1=16-20=-4<0

Hence, the given equation has no real roots.

(iv) The given equation is

5xx-2+6=05x2-10x+6=0

This is of the form ax2+bx+c=0, where a = 5, b = −10 and c = 6.

∴ Discriminant, D = b2-4ac=-102-4×5×6=100-120=-20<0

Hence, the given equation has no real roots.

(v) The given equation is 12x2-415x+5=0.

This is of the form ax2+bx+c=0, where a = 12, b-415 and c = 5.

∴ Discriminant, D = b2-4ac=-4152-4×12×5=240-240=0

Hence, the given equation has real and equal roots.

(vi) The given equation is x2-x+2=0.

This is of the form ax2+bx+c=0, where a = 1, b = −1 and c = 2.

∴ Discriminant, D = b2-4ac=-12-4×1×2=1-8=-7<0

Hence, the given equation has no real roots.

Answer:

The given equation is 2a2+b2x2+2a+bx+1=0.
D=2a+b2-4×2a2+b2×1       =4a2+2ab+b2-8a2+b2       =4a2+8ab+4b2-8a2-8b2       =-4a2+8ab-4b2       =-4a2-2ab+b2       =-4a-b2<0
Hence, the given equation has no real roots.



Page No 202:

Question 3:

The given equation is 2a2+b2x2+2a+bx+1=0.
D=2a+b2-4×2a2+b2×1       =4a2+2ab+b2-8a2+b2       =4a2+8ab+4b2-8a2-8b2       =-4a2+8ab-4b2       =-4a2-2ab+b2       =-4a-b2<0
Hence, the given equation has no real roots.

Answer:

Given: x2 + px  q2 = 0Here, a = 1, b = p and c = q2Discriminant D is given by:D = (b2  4ac)= p2  4 × 1 × (q2)= (p2 + 4q2) > 0D>0 for all real values of p and q.Thus, the roots of the equation are real.

Page No 202:

Question 4:

Given: x2 + px  q2 = 0Here, a = 1, b = p and c = q2Discriminant D is given by:D = (b2  4ac)= p2  4 × 1 × (q2)= (p2 + 4q2) > 0D>0 for all real values of p and q.Thus, the roots of the equation are real.

Answer:

Given: 3x2 + 2kx + 27 = 0Here, a = 3, b = 2k and c = 27It is given that the roots of the equation are real and equal; therefore, we have:D = 0 (2k)2  4 × 3 × 27 = 0 4k2  324 = 0 4k2 = 324 k2 = 81 k = ±9 k = 9 or k = 9

Page No 202:

Question 5:

Given: 3x2 + 2kx + 27 = 0Here, a = 3, b = 2k and c = 27It is given that the roots of the equation are real and equal; therefore, we have:D = 0 (2k)2  4 × 3 × 27 = 0 4k2  324 = 0 4k2 = 324 k2 = 81 k = ±9 k = 9 or k = 9

Answer:

The given equation is

kxx-25+10=0kx2-25kx+10=0

This is of the form ax2+bx+c=0, where a = k, b = -25k and c = 10.

D=b2-4ac=-25k2-4×k×10=20k2-40k

The given equation will have real and equal roots if D = 0.

20k2-40k=020kk-2=0k=0 or k-2=0k=0 or k=2

But, for k = 0, we get 10 = 0, which is not true.

Hence, 2 is the required value of k.

Page No 202:

Question 6:

The given equation is

kxx-25+10=0kx2-25kx+10=0

This is of the form ax2+bx+c=0, where a = k, b = -25k and c = 10.

D=b2-4ac=-25k2-4×k×10=20k2-40k

The given equation will have real and equal roots if D = 0.

20k2-40k=020kk-2=0k=0 or k-2=0k=0 or k=2

But, for k = 0, we get 10 = 0, which is not true.

Hence, 2 is the required value of k.

Answer:

The given equation is 4x2+px+3=0.

This is of the form ax2+bx+c=0, where a = 4, b = p and c = 3.

D=b2-4ac=p2-4×4×3=p2-48

The given equation will have real and equal roots if D = 0.

p2-48=0p2=48p=±48=±43

Hence, 43 and -43 are the required values of p.

Page No 202:

Question 7:

The given equation is 4x2+px+3=0.

This is of the form ax2+bx+c=0, where a = 4, b = p and c = 3.

D=b2-4ac=p2-4×4×3=p2-48

The given equation will have real and equal roots if D = 0.

p2-48=0p2=48p=±48=±43

Hence, 43 and -43 are the required values of p.

Answer:

The given equation is 9x2-3kx+k=0.

This is of the form ax2+bx+c=0, where a = 9, b = −3k and c = k.

D=b2-4ac=-3k2-4×9×k=9k2-36k

The given equation will have real and equal roots if D = 0.

9k2-36k=09kk-4=0k=0 or k-4=0k=0 or k=4

But, k ≠ 0        (Given)

Hence, the required value of k is 4.

Page No 202:

Question 8:

The given equation is 9x2-3kx+k=0.

This is of the form ax2+bx+c=0, where a = 9, b = −3k and c = k.

D=b2-4ac=-3k2-4×9×k=9k2-36k

The given equation will have real and equal roots if D = 0.

9k2-36k=09kk-4=0k=0 or k-4=0k=0 or k=4

But, k ≠ 0        (Given)

Hence, the required value of k is 4.

Answer:

(i)
The given equation is 3k+1x2+2k+1x+1=0.

This is of the form ax2+bx+c=0, where a = 3k +1, b = 2(k + 1) and c = 1.

D=b2-4ac       =2k+12-4×3k+1×1       =4k2+2k+1-43k+1       =4k2+8k+4-12k-4
        =4k2-4k

The given equation will have real and equal roots if D = 0.

4k2-4k=04kk-1=0k=0 or k-1=0k=0 or k=1

Hence, 0 and 1 are the required values of k.

(ii)
x2+k2x+k-1+2=0x2+2kx+k2-k+2=0For real and equal roots D=0D=b2-4ac=0D=2k2-41k2-k+2D=4k2-4k2+4k-8=04k-8=0k=2

Page No 202:

Question 9:

(i)
The given equation is 3k+1x2+2k+1x+1=0.

This is of the form ax2+bx+c=0, where a = 3k +1, b = 2(k + 1) and c = 1.

D=b2-4ac       =2k+12-4×3k+1×1       =4k2+2k+1-43k+1       =4k2+8k+4-12k-4
        =4k2-4k

The given equation will have real and equal roots if D = 0.

4k2-4k=04kk-1=0k=0 or k-1=0k=0 or k=1

Hence, 0 and 1 are the required values of k.

(ii)
x2+k2x+k-1+2=0x2+2kx+k2-k+2=0For real and equal roots D=0D=b2-4ac=0D=2k2-41k2-k+2D=4k2-4k2+4k-8=04k-8=0k=2

Answer:

The given equation is 2p+1x2-7p+2x+7p-3=0.

This is of the form ax2+bx+c=0, where a = 2p +1, b = (7p + 2) and c = 7p − 3.

D=b2-4ac       =-7p+22-4×2p+1×7p-3       =49p2+28p+4-414p2+p-3       =49p2+28p+4-56p2-4p+12       
       =-7p2+24p+16

The given equation will have real and equal roots if D = 0.

-7p2+24p+16=07p2-24p-16=07p2-28p+4p-16=07pp-4+4p-4=0
p-47p+4=0p-4=0 or 7p+4=0p=4 or p=-47

Hence, 4 and -47 are the required values of p.

Page No 202:

Question 10:

The given equation is 2p+1x2-7p+2x+7p-3=0.

This is of the form ax2+bx+c=0, where a = 2p +1, b = (7p + 2) and c = 7p − 3.

D=b2-4ac       =-7p+22-4×2p+1×7p-3       =49p2+28p+4-414p2+p-3       =49p2+28p+4-56p2-4p+12       
       =-7p2+24p+16

The given equation will have real and equal roots if D = 0.

-7p2+24p+16=07p2-24p-16=07p2-28p+4p-16=07pp-4+4p-4=0
p-47p+4=0p-4=0 or 7p+4=0p=4 or p=-47

Hence, 4 and -47 are the required values of p.

Answer:

The given equation is p+1x2-6p+1x+3p+9=0.

This is of the form ax2+bx+c=0, where a = p +1, b = 6(p + 1) and c = 3(p + 9).

D=b2-4ac       =-6p+12-4×p+1×3p+9       =12p+13p+1-p+9       =12p+12p-6
 
The given equation will have real and equal roots if D = 0.

12p+12p-6=0p+1=0 or 2p-6=0p=-1 or p=3

But, p-1           (Given)

Thus, the value of p is 3.

Putting p = 3, the given equation becomes 4x2-24x+36=0.

4x2-24x+36=04x2-6x+9=0x-32=0x-3=0
x=3

Hence, 3 is the repeated root of this equation.

Page No 202:

Question 11:

The given equation is p+1x2-6p+1x+3p+9=0.

This is of the form ax2+bx+c=0, where a = p +1, b = 6(p + 1) and c = 3(p + 9).

D=b2-4ac       =-6p+12-4×p+1×3p+9       =12p+13p+1-p+9       =12p+12p-6
 
The given equation will have real and equal roots if D = 0.

12p+12p-6=0p+1=0 or 2p-6=0p=-1 or p=3

But, p-1           (Given)

Thus, the value of p is 3.

Putting p = 3, the given equation becomes 4x2-24x+36=0.

4x2-24x+36=04x2-6x+9=0x-32=0x-3=0
x=3

Hence, 3 is the repeated root of this equation.

Answer:

It is given that −5 is a root of the quadratic equation 2x2+px-15=0.

2-52+p×-5-15=0-5p+35=0p=7

The roots of the equation px2+px+k=0 = 0 are equal.

D=0p2-4pk=072-4×7×k=049-28k=0
k=4928=74

Thus, the value of k is 74.

Page No 202:

Question 12:

It is given that −5 is a root of the quadratic equation 2x2+px-15=0.

2-52+p×-5-15=0-5p+35=0p=7

The roots of the equation px2+px+k=0 = 0 are equal.

D=0p2-4pk=072-4×7×k=049-28k=0
k=4928=74

Thus, the value of k is 74.

Answer:

It is given that 3 is a root of the quadratic equation x2-x+k=0.

32-3+k=0k+6=0k=-6

The roots of the equation x2+2kx+k2+2k+p=0 are equal.

D=02k2-4×1×k2+2k+p=04k2-4k2-8k-4p=0-8k-4p=0
p=8k-4=-2kp=-2×-6=12

Hence, the value of p is 12.

Page No 202:

Question 13:

It is given that 3 is a root of the quadratic equation x2-x+k=0.

32-3+k=0k+6=0k=-6

The roots of the equation x2+2kx+k2+2k+p=0 are equal.

D=02k2-4×1×k2+2k+p=04k2-4k2-8k-4p=0-8k-4p=0
p=8k-4=-2kp=-2×-6=12

Hence, the value of p is 12.

Answer:

It is given that −4 is a root of the quadratic equation x2+2x+4p=0.

-42+2×-4+4p=016-8+4p=04p+8=0p=-2

The equation x2+px1+3k+73+2k=0 has equal roots.

 D=0p1+3k2-4×1×73+2k=0-21+3k2-283+2k=041+6k+9k2-283+2k=0
41+6k+9k2-21-14k=09k2-8k-20=09k2-18k+10k-20=09kk-2+10k-2=0
k-29k+10=0k-2=0 or 9k+10=0k=2 or k=-109

Hence, the required value of k is 2 or -109.

Page No 202:

Question 14:

It is given that −4 is a root of the quadratic equation x2+2x+4p=0.

-42+2×-4+4p=016-8+4p=04p+8=0p=-2

The equation x2+px1+3k+73+2k=0 has equal roots.

 D=0p1+3k2-4×1×73+2k=0-21+3k2-283+2k=041+6k+9k2-283+2k=0
41+6k+9k2-21-14k=09k2-8k-20=09k2-18k+10k-20=09kk-2+10k-2=0
k-29k+10=0k-2=0 or 9k+10=0k=2 or k=-109

Hence, the required value of k is 2 or -109.

Answer:

Given: (1 + m2)x2 + 2mcx + (c2  a2) = 0Here, a = (1 + m2), b = 2mc and c = (c2  a2)It is given that the roots of the equation are equal; therefore, we have:D = 0 (b2  4ac) = 0 (2mc)2  4 × (1 + m2) × (c2  a2) = 0 4m2c2  4(c2  a2 + m2c2  m2a2) = 0 4m2c2  4c2 + 4a2  4m2c2 + 4m2a2 = 0 4c2 + 4a2 + 4m2a2 = 0 a2 + m2a2 = c2 a2(1 + m2) = c2 c2 = a2(1 + m2)Hence proved.

Page No 202:

Question 15:

Given: (1 + m2)x2 + 2mcx + (c2  a2) = 0Here, a = (1 + m2), b = 2mc and c = (c2  a2)It is given that the roots of the equation are equal; therefore, we have:D = 0 (b2  4ac) = 0 (2mc)2  4 × (1 + m2) × (c2  a2) = 0 4m2c2  4(c2  a2 + m2c2  m2a2) = 0 4m2c2  4c2 + 4a2  4m2c2 + 4m2a2 = 0 4c2 + 4a2 + 4m2a2 = 0 a2 + m2a2 = c2 a2(1 + m2) = c2 c2 = a2(1 + m2)Hence proved.

Answer:

Given: (c2  ab)x2  2(a2  bc)x + (b2  ac) = 0Here, a = (c2  ab), b = 2(a2  bc), c = (b2  ac)It is given that the roots of the equation are real and equal; therefore, we have:D=0(b2  4ac) = 0 {2(a2  bc)}2  4 × (c2  ab) × (b2  ac) = 0 4(a4  2a2bc + b2c2)  4(b2c2  ac3  ab3 + a2bc) = 0 a4  2a2bc + b2c2  b2c2 + ac3 + ab3  a2bc = 0 a4  3a2bc + ac3 + ab3 = 0 a(a3  3abc + c3 + b3) = 0Now,a = 0 or a3  3abc + c3 + b3 = 0a = 0 or a3 + b3 + c3 = 3abc

Page No 202:

Question 16:

Given: (c2  ab)x2  2(a2  bc)x + (b2  ac) = 0Here, a = (c2  ab), b = 2(a2  bc), c = (b2  ac)It is given that the roots of the equation are real and equal; therefore, we have:D=0(b2  4ac) = 0 {2(a2  bc)}2  4 × (c2  ab) × (b2  ac) = 0 4(a4  2a2bc + b2c2)  4(b2c2  ac3  ab3 + a2bc) = 0 a4  2a2bc + b2c2  b2c2 + ac3 + ab3  a2bc = 0 a4  3a2bc + ac3 + ab3 = 0 a(a3  3abc + c3 + b3) = 0Now,a = 0 or a3  3abc + c3 + b3 = 0a = 0 or a3 + b3 + c3 = 3abc

Answer:

Given: 2x2 + px + 8 = 0Here, a = 2, b = p and c = 8Discriminant D is given by:D = (b2  4ac)p2  4 × 2 × 8(p2  64)If D  0, the roots of the equation will be real. (p2  64)  0 (p + 8) (p - 8)  0 p  8 and p  -8Thus, the roots of the equation are real for p  8 and p-8.

Page No 202:

Question 17:

Given: 2x2 + px + 8 = 0Here, a = 2, b = p and c = 8Discriminant D is given by:D = (b2  4ac)p2  4 × 2 × 8(p2  64)If D  0, the roots of the equation will be real. (p2  64)  0 (p + 8) (p - 8)  0 p  8 and p  -8Thus, the roots of the equation are real for p  8 and p-8.

Answer:

Given: (α  12)x2 + 2(α  12)x + 2 = 0Here, a = (α  12), b = 2(α  12) and c = 2It is given that the roots of the equation are equal; therefore, we have:D = 0 (b2  4ac) = 0 {2(α  12)}2  4 × (α  12) × 2 = 0 4(α2  24α + 144)  8(α  12) = 0 4α2  96α + 576  8α + 96 = 0 4α2  104α + 672 = 0 α2  26α + 168 = 0 α2  14α  12α + 168 = 0 α(α  14)  12(α  14) = 0 (α  14)(α  12) = 0 α = 14 or α = 12If the value of α is 12, the given equation becomes non-quadratic.Therefore, the valueof α will be 14 for the equation to have equal roots.



Page No 203:

Question 18:

Given: (α  12)x2 + 2(α  12)x + 2 = 0Here, a = (α  12), b = 2(α  12) and c = 2It is given that the roots of the equation are equal; therefore, we have:D = 0 (b2  4ac) = 0 {2(α  12)}2  4 × (α  12) × 2 = 0 4(α2  24α + 144)  8(α  12) = 0 4α2  96α + 576  8α + 96 = 0 4α2  104α + 672 = 0 α2  26α + 168 = 0 α2  14α  12α + 168 = 0 α(α  14)  12(α  14) = 0 (α  14)(α  12) = 0 α = 14 or α = 12If the value of α is 12, the given equation becomes non-quadratic.Therefore, the valueof α will be 14 for the equation to have equal roots.

Answer:

Given: 9x2 + 8kx + 16 = 0Here,a = 9, b = 8k and c = 16It is given that the roots of the equation are real and equal; therefore, we have:D = 0 (b2  4ac) = 0 (8k)2  4 × 9 × 16 = 0 64k2  576 = 0 64k2 = 576 k2 = 9 k = ±3 k = 3 or k = 3

Page No 203:

Question 19:

Given: 9x2 + 8kx + 16 = 0Here,a = 9, b = 8k and c = 16It is given that the roots of the equation are real and equal; therefore, we have:D = 0 (b2  4ac) = 0 (8k)2  4 × 9 × 16 = 0 64k2  576 = 0 64k2 = 576 k2 = 9 k = ±3 k = 3 or k = 3

Answer:

(i) The given equation is kx2+6x+1=0.

D=62-4×k×1=36-4k

The given equation has real and distinct roots if D > 0.

36-4k>04k<36k<9

(ii) The given equation is x2-kx+9=0.

D=-k2-4×1×9=k2-36

The given equation has real and distinct roots if D > 0.

k2-36>0k-6k+6>0k<-6 or k>6

(iii) The given equation is 9x2+3kx+4=0.

D=3k2-4×9×4=9k2-144

The given equation has real and distinct roots if D > 0.

9k2-144>09k2-16>0k-4k+4>0k<-4 or k>4

(iv) The given equation is 5x2-kx+1=0.

D=-k2-4×5×1=k2-20

The given equation has real and distinct roots if D > 0.

k2-20>0k2-252>0k-25k+25>0k<-25 or k>25

Page No 203:

Question 20:

(i) The given equation is kx2+6x+1=0.

D=62-4×k×1=36-4k

The given equation has real and distinct roots if D > 0.

36-4k>04k<36k<9

(ii) The given equation is x2-kx+9=0.

D=-k2-4×1×9=k2-36

The given equation has real and distinct roots if D > 0.

k2-36>0k-6k+6>0k<-6 or k>6

(iii) The given equation is 9x2+3kx+4=0.

D=3k2-4×9×4=9k2-144

The given equation has real and distinct roots if D > 0.

9k2-144>09k2-16>0k-4k+4>0k<-4 or k>4

(iv) The given equation is 5x2-kx+1=0.

D=-k2-4×5×1=k2-20

The given equation has real and distinct roots if D > 0.

k2-20>0k2-252>0k-25k+25>0k<-25 or k>25

Answer:

The given equation is a-bx2+5a+bx-2a-b=0.

D=5a+b2-4×a-b×-2a-b       =25a+b2+8a-b2
Since a and b are real and ab, so a-b2>0 and a+b2>0.

8a-b2>0    .....(1)               (Product of two positive numbers is always positive)      

Also, 25a+b2>0             .....(2)              (Product of two positive numbers is always positive)

Adding (1) and (2), we get

25a+b2+8a-b2>0                 (Sum of two positive numbers is always positive)

D>0

Hence, the roots of the given equation are real and unequal.

Page No 203:

Question 21:

The given equation is a-bx2+5a+bx-2a-b=0.

D=5a+b2-4×a-b×-2a-b       =25a+b2+8a-b2
Since a and b are real and ab, so a-b2>0 and a+b2>0.

8a-b2>0    .....(1)               (Product of two positive numbers is always positive)      

Also, 25a+b2>0             .....(2)              (Product of two positive numbers is always positive)

Adding (1) and (2), we get

25a+b2+8a-b2>0                 (Sum of two positive numbers is always positive)

D>0

Hence, the roots of the given equation are real and unequal.

Answer:

Ans

Page No 203:

Question 22:

Ans

Answer:

Ans

Page No 203:

Question 23:

Ans

Answer:

It is given that the roots of the equation ax2+2bx+c=0 are real.
D1=2b2-4×a×c04b2-ac0b2-ac0             .....1

Also, the roots of the equation bx2-2acx+b=0 are real.
D2=-2ac2-4×b×b04ac-b20-4b2-ac0
b2-ac0                    .....2

The roots of the given equations are simultaneously real if (1) and (2) holds true together. This is possible if
b2-ac=0b2=ac

Page No 203:

Question 24:

It is given that the roots of the equation ax2+2bx+c=0 are real.
D1=2b2-4×a×c04b2-ac0b2-ac0             .....1

Also, the roots of the equation bx2-2acx+b=0 are real.
D2=-2ac2-4×b×b04ac-b20-4b2-ac0
b2-ac0                    .....2

The roots of the given equations are simultaneously real if (1) and (2) holds true together. This is possible if
b2-ac=0b2=ac

Answer:

Since,  x=-12 is a root of the quadratic equation 3x2 + 2kx + 3 = 0, 
then, it must satisfies the equation.

3-122+2k-12+3=0314-k+3=034-k+3=03-4k+124=03-4k+12=04k=15k=154Hence, the value of k is 154.

Page No 203:

Question 25:

Since,  x=-12 is a root of the quadratic equation 3x2 + 2kx + 3 = 0, 
then, it must satisfies the equation.

3-122+2k-12+3=0314-k+3=034-k+3=03-4k+124=03-4k+12=04k=15k=154Hence, the value of k is 154.

Answer:

Since, x=-13 is a root of the quadratic equation 2x2 + 2x + k = 0, 
then, it must satisfies the equation.

​2-132+2-13+k=0219-23+k=029-23+k=02-6+9k9=0-4+9k=09k=4k=49Hence, the value of k is 49.

Page No 203:

Question 26:

Since, x=-13 is a root of the quadratic equation 2x2 + 2x + k = 0, 
then, it must satisfies the equation.

​2-132+2-13+k=0219-23+k=029-23+k=02-6+9k9=0-4+9k=09k=4k=49Hence, the value of k is 49.

Answer:

Given: x2 – 8x + 18 = 0

x2-8x+18=0Adding and subtracting 12×82, we getx2-8x+18+42-42=0x2-8x+16+18-16=0x-42+2=0x-42=-2x-4=±-2But, -2 is not a real number.

Hence, the quadratic equation x2 – 8x + 18 = 0 has no real solution.

Page No 203:

Question 27:

Given: x2 – 8x + 18 = 0

x2-8x+18=0Adding and subtracting 12×82, we getx2-8x+18+42-42=0x2-8x+16+18-16=0x-42+2=0x-42=-2x-4=±-2But, -2 is not a real number.

Hence, the quadratic equation x2 – 8x + 18 = 0 has no real solution.

Answer:

Let 4x2 –12x – k = 0 be a quadratic equation.

It is given that, it has no real roots.

Discriminant<0b2-4ac<0-122-44-k<0144+16k<016k<-144k<-9

Hence, the values of k must be less than –9.

Page No 203:

Question 28:

Let 4x2 –12x – k = 0 be a quadratic equation.

It is given that, it has no real roots.

Discriminant<0b2-4ac<0-122-44-k<0144+16k<016k<-144k<-9

Hence, the values of k must be less than –9.

Answer:

Let one root be α and the other root be 1α.

The given equation is 3x– 10k = 0.

Product of roots = k3
α×1α=k31=k3k=3

Hence, the value of k for which the roots of the equation 3x2 – 10x + k = 0 are reciprocal of each other is 3.

Page No 203:

Question 29:

Let one root be α and the other root be 1α.

The given equation is 3x– 10k = 0.

Product of roots = k3
α×1α=k31=k3k=3

Hence, the value of k for which the roots of the equation 3x2 – 10x + k = 0 are reciprocal of each other is 3.

Answer:

Let one root be α and the other root be 1α.

The given equation is 5x2 +13k = 0.

Product of roots = k5
α×1α=k51=k5k=5

Hence, the value of k is 5.

Page No 203:

Question 30:

Let one root be α and the other root be 1α.

The given equation is 5x2 +13k = 0.

Product of roots = k5
α×1α=k51=k5k=5

Hence, the value of k is 5.

Answer:

Let 3x2 + kx + 3 = 0 be a quadratic equation.

It is given that, it has real and equal roots.

Discriminant=0b2-4ac=0k2-433=0k2=36k=±6

Hence, the values of k are –6 and 6.

Page No 203:

Question 31:

Let 3x2 + kx + 3 = 0 be a quadratic equation.

It is given that, it has real and equal roots.

Discriminant=0b2-4ac=0k2-433=0k2=36k=±6

Hence, the values of k are –6 and 6.

Answer:

Let 9x2 – 3ax + 1 = 0 be a quadratic equation.

It is given that, it has real and equal roots.

Discriminant=0b2-4ac=0-3a2-491=09a2=36a2=4a=±2

Hence, the values of a are –2 and 2.

Page No 203:

Question 32:

Let 9x2 – 3ax + 1 = 0 be a quadratic equation.

It is given that, it has real and equal roots.

Discriminant=0b2-4ac=0-3a2-491=09a2=36a2=4a=±2

Hence, the values of a are –2 and 2.

Answer:

Let x2 + k(2x + – 1) + 2 = 0 be a quadratic equation.

x2 + k(2x + – 1) + 2 = 0
x2 + 2xk + k2 – k + 2 = 0

It is given that, it has real and equal roots.

Discriminant=0b2-4ac=02k2-41k2-k+2=04k2-4k2+4k-8=04k=8k=2

Hence, the value of k is 2.



Page No 224:

Question 1:

Let x2 + k(2x + – 1) + 2 = 0 be a quadratic equation.

x2 + k(2x + – 1) + 2 = 0
x2 + 2xk + k2 – k + 2 = 0

It is given that, it has real and equal roots.

Discriminant=0b2-4ac=02k2-41k2-k+2=04k2-4k2+4k-8=04k=8k=2

Hence, the value of k is 2.

Answer:

Let the required natural number be x.

According to the given condition,

x+x2=156x2+x-156=0x2+13x-12x-156=0xx+13-12x+13=0
x+13x-12=0x+13=0 or x-12=0x=-13 or x=12

x = 12     (x cannot be negative)

Hence, the required natural number is 12.

Page No 224:

Question 2:

Let the required natural number be x.

According to the given condition,

x+x2=156x2+x-156=0x2+13x-12x-156=0xx+13-12x+13=0
x+13x-12=0x+13=0 or x-12=0x=-13 or x=12

x = 12     (x cannot be negative)

Hence, the required natural number is 12.

Answer:

Let the required natural number be x.

According to the given condition,

x+x=132

Putting x=y or x = y2, we get

y2+y=132y2+y-132=0y2+12y-11y-132=0yy+12-11y+12=0
y+12y-11=0y+12=0 or y-11=0y=-12 or y=11

y = 11         (y cannot be negative)

Now,

x=11x=112=121

Hence, the required natural number is 121.

Page No 224:

Question 3:

Let the required natural number be x.

According to the given condition,

x+x=132

Putting x=y or x = y2, we get

y2+y=132y2+y-132=0y2+12y-11y-132=0yy+12-11y+12=0
y+12y-11=0y+12=0 or y-11=0y=-12 or y=11

y = 11         (y cannot be negative)

Now,

x=11x=112=121

Hence, the required natural number is 121.

Answer:

Let the required numbers be x and (28 − x).

According to the given condition,

x28-x=19228x-x2=192x2-28x+192=0x2-16x-12x+192=0
xx-16-12x-16=0x-12x-16=0x-12=0 or x-16=0x=12 or x=16

When x = 12,

28 − x = 28 − 12 = 16

When x = 16,

28 − x = 28 − 16 = 12

Hence, the required numbers are 12 and 16.

Page No 224:

Question 4:

Let the required numbers be x and (28 − x).

According to the given condition,

x28-x=19228x-x2=192x2-28x+192=0x2-16x-12x+192=0
xx-16-12x-16=0x-12x-16=0x-12=0 or x-16=0x=12 or x=16

When x = 12,

28 − x = 28 − 12 = 16

When x = 16,

28 − x = 28 − 16 = 12

Hence, the required numbers are 12 and 16.

Answer:

Let the required two consecutive positive integers be x and (x + 1).

According to the given condition,
x2+x+12=365x2+x2+2x+1=3652x2+2x-364=0x2+x-182=0
x2+14x-13x-182=0xx+14-13x+14=0x+14x-13=0x+14=0 or x-13=0
x=-14 or x=13
x = 13                (x is a positive integer)

When x = 13,
x + 1 = 13 + 1 = 14

Hence, the required positive integers are 13 and 14.

Page No 224: