011-40705070  or  
Call me
Download our Mobile App
Select Board & Class
  • Select Board
  • Select Class
Sakshi Singh from DEORIA SENIOR SECONDARY SCHOOL, asked a question
Subject: Math , asked on 6/3/12

a semi circular sheet of metal of diameter 28 cm is bent to form a cone. find the capacity of the cone.

EXPERT ANSWER

Lalit Mehra , Meritnation Expert added an answer, on 7/3/12
7677 helpful votes in Math

Let r cm and R cm be the radius of the semi-circular sheet and base of the conical cup respectively.

Suppose the depth of the conical cup is H cm.

Given, 2r = 28 cm

r = 14 cm

When the semi-circular sheet of metal is bent into an open conical cup, then 

Slant height of the cone, L = Radius of the semi-circular sheet = 14 cm

Circumference of base of cone = 2πR

∴ 2π R  = 14π cm

⇒ 2R = 14 cm

R = 7 cm

Slant height of the cone, L = 14 cm

⇒ 49 cm2 + H 2 = (14 cm)2 = 196 cm2

H 2 = 196 cm2 – 49 cm2 = 147 cm2

Capacity or volume of the conical cup =

This conversation is already closed by Expert

  • Was this answer helpful?
  • 20
View More
Crazzy From Delhi Public School, added an answer, on 6/3/12
379 helpful votes in Math

 Let   r   cm and   R   cm be the radius of the semi-circular sheet and base of the conical cup respectively.

Suppose the depth of the conical cup is H cm.

Given, 2r = 2.8 cm

⇒ = 14 cm

When the semi-circular sheet of metal is bent into an open conical cup, then

Slant height of the cone, L = Radius of the semi-circular sheet = 14 cm

Circumference of base of cone = πr

∴ 2πr = πr = 14π cm

⇒ 2R = 14 cm

⇒ R = 7 cm

Slant height of the cone, L = 14 cm

⇒ 49 cm2 +  2 = (14 cm)2 = 196 cm2

⇒  2 = 196 cm2 – 49 cm2 = 147 cm2

Capacity or volume of the conical cup = 

 

:)

  • Was this answer helpful?
  • 1
Start a Conversation
You don't have any friends yet, please add some friends to start chatting
Unable to connect to the internet. Reconnect
friends (Class 8):
{{ item_friends['first_name']}} {{ item_friends['last_name']}}
{{ item_friends['first_name']}} {{ item_friends['last_name']}}
{{ item_friends["first_name"]}} {{ item_friends["last_name"]}} {{ item_friends["subText"] }}
{{ item_friends["notification_counter"]}} 99+
Pending Requests:
{{ item_friends['first_name']}} {{ item_friends['last_name']}}
{{ item_friends['first_name']}} {{ item_friends['last_name']}}
{{ item_friends["first_name"]}} {{ item_friends["last_name"]}} {{ item_friends["school_name"] }}
Suggested Friends:
{{ item_friends['first_name']}} {{ item_friends['last_name']}}
{{ item_friends["first_name"]}} {{ item_friends["last_name"]}} {{ item_friends["school_name"] }}
Friends
{{ item_friend["first_name"]}} {{ item_friend["last_name"]}} {{ item_friend["school_name"] }}
Classmate
{{ item_classmate["first_name"]}} {{ item_classmate["last_name"]}} {{ item_classmate["school_name"] }}
School
{{ item_school["first_name"]}} {{ item_school["last_name"]}} {{ item_school["school_name"] }}
Others
{{ item_others["first_name"]}} {{ item_others["last_name"]}} {{ item_others["school_name"] }}