011-40705070  or  
Call me
Download our Mobile App
Select Board & Class
  • Select Board
  • Select Class
Kavya Shabu from Bharatiya vidya bhavan,monvila, asked a question
Subject: Math , asked on 4/3/11

 Ttangents PQ and PR are drawn at a circle with centre O from an external point P prove that <QPR = 2 <OQR

EXPERT ANSWER

Lalit Mehra , Meritnation Expert added an answer, on 10/3/11
7660 helpful votes in Math

Hi!
Here is the answer to your question.
 
Given: A circle with centre O. PQ and PR are tangents drawn from an external point P to the circle.
To prove: ∠QPR = 2∠OQR
Proof:
∠OQP = ∠ORP = 90°     (Radius is perpendicular to the tangent at point of contact)
In quadrilateral OQPR
∠QPR + ∠OQP + ∠QOR + ∠ORP = 360°
∴∠OPR + 90° + ∠QOR + 90° = 360°
⇒ ∠OPR + ∠QOR = 180°  ... (1)
In ∆OQR
OQ = OR      (Radius of the circle)
⇒ ∠ORQ = ∠OQR      (Equal sides have equal angles opposite to them)
∠QOR + ∠OQR + ∠ORQ = 180°  (angle sum property)
⇒ ∠QOR + 2∠OQR = 180°              ... (2)
From (1) and (2), we get
∠QPR + ∠QOR = ∠QOR + 2∠OQR
⇒ ∠QPR = 2∠OQR
 
Cheers!

This conversation is already closed by Expert

  • Was this answer helpful?
  • 2
View More
Kavya Shabu From Bharatiya Vidya Bhavan,monvila, added an answer, on 4/3/11
4 helpful votes in Math

 this is not the same one 

  • Was this answer helpful?
  • 0
Sumeet Ranka From Bhavan's Bhagwandas Purohit Vidya Mandir, Civil Lines, added an answer, on 4/3/11
7 helpful votes in Math

go on pg 212 of our text book... u lll get it  

  • Was this answer helpful?
  • 0
Start a Conversation
You don't have any friends yet, please add some friends to start chatting
Unable to connect to the internet. Reconnect
friends:
{{ item_friends['first_name']}} {{ item_friends['last_name']}}
{{ item_friends['first_name']}} {{ item_friends['last_name']}}
{{ item_friends["first_name"]}} {{ item_friends["last_name"]}} {{ item_friends["subText"] }}
{{ item_friends["notification_counter"]}} 99+
Pending Requests:
{{ item_friends['first_name']}} {{ item_friends['last_name']}}
{{ item_friends['first_name']}} {{ item_friends['last_name']}}
{{ item_friends["first_name"]}} {{ item_friends["last_name"]}} {{ item_friends["school_name"] }}
Suggested Friends:
{{ item_friends['first_name']}} {{ item_friends['last_name']}}
{{ item_friends["first_name"]}} {{ item_friends["last_name"]}} {{ item_friends["school_name"] }}
Friends
{{ item_friend["first_name"]}} {{ item_friend["last_name"]}} {{ item_friend["school_name"] }}
Classmate
{{ item_classmate["first_name"]}} {{ item_classmate["last_name"]}} {{ item_classmate["school_name"] }}
School
{{ item_school["first_name"]}} {{ item_school["last_name"]}} {{ item_school["school_name"] }}
Others
{{ item_others["first_name"]}} {{ item_others["last_name"]}} {{ item_others["school_name"] }}