find maximum and minimum value of f(x)=x2-3x-4/x-8

Dear Student,
Please find below the solution to the asked query:

We have:fx=y=x2-3x-4x-8dydx=x-8ddxx2-3x-4-x2-3x-4.ddxx-8x-82=x-82x-3-x2-3x-4x-82=2x2-3x-16x+24-x2+3x+4x-82=x2-16x+28x-82=x2-14x-2x+28x-82=x-2x-14x-82For maxima or minima, dydx=0, hencex-2x-14x-82=0x=2 and x=14.One value will give local minima while other will give local maxima.fx=x2-3x-4x-8f2=4-6-42-8=1f14=196-42-414-8=1506=25Nowf'x>0 when x-,214, and f'x<0 when x2,14Hence fx increases when  x-,2, then decreases when x2,14 and again increases when x14,.Hence x=2 is point of local maxima and x=14 is a point of local minima.Note: Here global maximum and minimum value cannot be determined.

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards

  • 2
What are you looking for?