integral of {log(x +1/x)} .{1/1+x^2}dx (limit is from 0 to infinity ) is

0logx+1x11+x2dxPut x = tan t or dx = sec2t dt and limit changes from 0 to π/2logx+1x=log1+tan2ttant=log1sint.cost=-logsint -logcost11+x2=1sec2tPutting all these value we get, -0π/2logsint +logcostdt0π/2logsint dt=0π/2logsinπ2-t dt=0π/2logcost dt-0π/2logsint +logcostdt=-20π/2logsintdt

Now we can write it as, 
-20π/2log(sinx)dxNow finding 0π/2log(sinx)dx,
Let I=0π2logsin xdx -------(1)
I=0π2logsin π2-xdx           abf(x)dx=abf(a+b-x)dx
I=0π2logcos xdx  --------(2)

Eq(1)+Eq(2)2I=0π2logsin x+0π2logcos x

2I=0π2logsin x+logcos xdx2I=0π2logsin x cos xdx

2I=0π2logsin 2x2dx2I=0π2logsin 2xdx-0π2log2 dx    -------(3)

Let 2x=t
dx=dt2-----(4)

When x=0, t=0.
When x=π2, t=π

So, using Eq(4) in Eq(3), we have:-

2I=0πlogsin tdt2-0π2log2 dx2I=0π2logsin tdt-0π2log2 dx

2I=I-0π2log2 dxI=-0π2log2 dx

I=log2-x0π2I=-π2log2
So
-2I = -2×-π2log2=πlog2

  • 2
What are you looking for?