Let A ={x:x3+1=0};B={x:x2-x+1=0} .Find A n (intersection) B when (i) x is real (ii) x is not real.

Dear Student,
Please find below the solution to the asked query:

We have:A=x:x3+1=0B=x:x2-x+1=0Intersection will consist of common point, hence to get intersection of two sets, put:x3+1=x2-x+1x+1x2-x+1=x2-x+1x+1x2-x+1-x2-x+1=0x2-x+1x+1-1=0x2-x+1x=0casei x is realDiscriminant of x2-x+1 is negative 1-2-4=-3, hence it cannot be 0.x=0HenceAB= 0 x2-x+1x=0Caseii x is not real.x2-x+1=0By Shridharacharya's formula, we have:x=--1±-12-4112=1±1-42=1±-32=1±i32x=1+i32 or 1-i32AB=1+i32,1-i32

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards

  • -2
What are you looking for?