Prove by PMI
logx^n=nlogx

Dear Student,
Please find below the solution to the asked query:

We have Pn:logxn=nlogxStep 1: Base CaseFor n=1logx1=logxlogx=logx which is true.Hence Pn is true for n=1.Step 2: Inductive hypothesisLet Pn be true for n=k logxk=klogx ;iStep 3: Inductive CaseConsiderlogxk+1=logxk.x=logxk+logx  As logab=loga+logb=klogx+logx  Using i=k+1logxlogxk+1=k+1logxHence Pn is true for n=k+1Since Pn is true for n=1 and assumption of truth for n=k, gives us the resultthat Pn is also true for n=k+1.Hence by Principal of mathematical induction Pn is true.

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards

  • 2
What are you looking for?