Some surnames were picked up from a local telephone directory and the frequency distribution of the number of letters of the English alphabets was obtained as follows:
Number of letters 1-4 4-7 7-10 10-13 13-16 16-19
Number of surnames  10 25 35 x 12 8
If it is given that mode of the distribution is 8, then find the missing frequency (x) 

We have,mode = 8So, modal class = 7-10Lower limit of modal class, l = 7Frequency of modal class, f1 = 35Frequency of the class preceding modal class = f0 = 25Frequency of class succeeding modal class = f2 = xclass size, h = 3Now, mode = l + f1 - f02f1 - f0 - f2×h8 = 7 + 35 - 252×35 - 25 - x×31 = 1070 - 25 - x×345-x = 30x = 45 - 30x = 15

  • 13
This ques is super simple!!!
to get the answer we must no the formula of mode i.e   MODE= L+ (f1-f0/2*f1-f0-f2) * H
Here the modal class is 7-10
hence, L=7 H=3 f1=35 f2=x f0=25
and mode is given 8.
hence, 8= 7+(35-25/70-25-x)*3
      => 1= 30/45-x
     =>  45-x=30
    => -x = -15
   hence, x= 15  is the solution
hope u got the ans
  • 1
that answer is right
 
  • 1
What are you looking for?