Tangents are drawn to the circle x^2+y^2=50 from a point P lying on the x-axis.These tangents meet the y-axis at points P1 and P2.Possible coordinates of P so that area of triangle PP1P2 is minimum,is/are (A)(10,0) (B)(10root2,0) (C)(-10,0) (D)(-10root2,0) Correct option is A,C

Dear Student,
Please find below the solution to the asked query:



We have:S:x2+y2-50=0Let co-ordinates of P be x1,y1=p,0Equation of pair of tangents from  x1,y1 is:SS1=T2x2+y2-50x12+y12-50=xx1+yy1-502x2+y2-50p2+0-50=px-502x2+y2-50p2-50=px-502This pair of tangents meet y-axis at poitns where x=0y2-50p2-50=0-502y2-50=2500p2-50y2=2500p2-50+50=2500+50p2-2500p2-50y2=50p2p2-50y=±50p2p2-50=±50p2-50pHence We have Q0,50p2-50p and R0,-50p2-50pNote that:Q and Rare equidistant from origin.Using distance formula you will get QR asQR=2p50p2-50 which will be base of triangle.Height of triangle will be OP=pArea=A=12×Base×HeightA=12×2p50p2-50×pA=p250p2-50A2=50p4p2-50Differentiate with respect to p, we get:2A.dAdp=200p3p2-50-50p42pp2-502For maxima/minima, dAdp=0200p3p2-50-50p42pp2-502=0200p3p2-50-50p42p=050p34p2-50-2p2=04p2-50-2p2=04p2-200-2p2=02p2=200p2=100p=±10I leave checking double derivative for you.Hence coordinates ofP are 10,0 or -10,0OptionA,C
‚Äč

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards

  • -20
What are you looking for?