​The length of the shortest normal chord of the parabola y2​ = 4x is what ?

Let the normal chord at P(at^2, 2at) to the parabola be of length r 
If the slope of the normal is tanθ, the other endpoint of the chord is 
Q (at^2 + rcosθ, 2at + rsinθ) 
As it lies on the parabola, 
(2at + rsinθ)^2 = 4a(at^2 + rcosθ) 
=> 4a^2t^2 + 4atrsinθ + r^2 sin^2 θ = 4a^2t^2 + 4arcosθ 
=> rsin^2 θ = 4a (cosθ - tsinθ) ... (1) 

y^2 = 4ax 
=> dy/dx = 2a/y 
and slope of normal, tanθ = - dx/dy = - y/2a = - t

Putting t = - tanθ in (1), 
=> rsin^2 θ = 4a (cosθ + sin^2 θ/cosθ) 
=> rsin^2 θ cosθ = 4a 
=> chord length, r = 4a/(sin^2 θ cosθ) 
=> r = 4a / [(1 - u^2) u] (putting cosθ = u) 

For r to be minimum, (1 -u^2) u should be maximum 
=> 1 - 3u^2 = 0 => u = 1/√3 
Also, second derivative of (1 - u^2) u is - 6u < 0 
=> (1 - u^2) u is maximum at u = 1/√3. 

=> Minimum chord length, 
r = 4a / [(2/3)(1/√3)] = 6√3 
since here a = 1

  • 0
What are you looking for?