Math Ncert Exemplar 2019 Solutions for Class 11 Science Maths Chapter 5 Complex Numbers And Quadratic Equations are provided here with simple step-by-step explanations. These solutions for Complex Numbers And Quadratic Equations are extremely popular among class 11 Science students for Maths Complex Numbers And Quadratic Equations Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Math Ncert Exemplar 2019 Book of class 11 Science Maths Chapter 5 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Math Ncert Exemplar 2019 Solutions. All Math Ncert Exemplar 2019 Solutions for class 11 Science Maths are prepared by experts and are 100% accurate.

Page No 91:

Question 1:

For a positive integer n, find the value of 1-in 1-1in.

Answer:

We have, 1-in 1-1in.
=1-i1-1in=1-i1--in     1i=-i=1-i1+in=1-i2n=1--1n=2n

Hence, 1-in 1-1in=2n.

Page No 91:

Question 2:

Evaluate n=113in+in+1, where n N.

Answer:

We have, n=113in+in+1
=i=1131+iin=1+ii+i2+i3+i4+...+i13=1+ii-1-i+1+i-1-i+1+i-1-i+1+i=1+ii=i+i2=i-1

Hence, n=113in+in+1=i-1.

Page No 91:

Question 4:

If 1+i22-i=x+iy, then find the value of x + y.

Answer:

We have,
x+iy=1+i22-i=1+i2+2i2-i=1-1+2i2-i×2+i2+i=2i2+i22-i2=4i+2i24+1=-25+45i
x=-25, y=45x+y=-25+45=25
Hence, the value of x + y is 25.

Page No 91:

Question 3:

If 1+i1-i3-1-i1+i3=x+iy, then find (x, y).

Answer:

We have,
x+iy=1+i1-i3-1-i1+i3=1+i1-i×1+i1+i3-1-i1+i×1-i1-i3=1+i2+2i1-i23-1+i2-2i1-i23=1-1+2i1+13-1-1-2i1+13=i3--i3=i3+i3=2i3=0-2i
Thus, x = 0 and y = −2.
Hence, (x, y) = (0, −2).

Page No 91:

Question 5:

If 1-i1+i100=a+ib, then find (a, b).

Answer:

We have,
a+ib=1-i1+i100=1-i1+i×1-i1-i100=1+i2-2i1-i2100=1-1-2i1+1100=-i100=i100=i425=125                i4=1=1+0i
Thus, a = 1 and b = 0.
Hence, (a, b) = (1, 0).

Page No 91:

Question 6:

If a = cos θ + i sin θ, find the value of 1+a1-a.

Answer:

Given: a = cos θ + i sin θ

1+a1-a=1+cosθ+isinθ1-cosθ-isinθ=1+cosθ+isinθ1-cosθ-isinθ×1-cosθ+isinθ1-cosθ+isinθ=1+isinθ2-cosθ21-cosθ2-isinθ2=1+i2sin2θ+2isinθ-cos2θ1+cos2θ-2cosθ-i2sin2θ=1-sin2θ-cos2θ+2isinθ1+sin2θ+cos2θ-2cosθ  i2=-1=1-1+2isinθ1+1-2cosθ  sin2θ+cos2θ=1=isinθ1-cosθ=2sinθ2cosθ22sin2θ2i            sin2θ=2sinθcosθ1-cos2θ=2sin2θ=cotθ2i
Hence, 1+a1-a=icotθ2.

Page No 91:

Question 7:

If (1 + i) z = (1 – iz¯, then show that z=-iz.

Answer:

Given: (1 + i) z = (1 – iz¯
zz¯=1-i1+i=1-i1+i×1-i1-i=1+i2-2i1-i2=1-1-2i1+1=-i
z=i z¯
Hence proved.

Page No 91:

Question 8:

If z = x + iy, then show that z z¯ + 2 (z + z¯ ) + b = 0, where bR, represents a circle.

Answer:

Given that z = x + iy.
Consider: z z¯ + 2 (z + z¯ ) + b = 0
x+iyx-iy+2x+iy+x-iy+b=0x2+y2+22x+b=0x2+4x+y2+b=0
represents a circle.
Hence proved.

Page No 91:

Question 9:

If the real part of z¯+2z¯-1 is 4, then show that the locus of the point representing z in the complex plane is a circle.

Answer:

Let z = x + iy.
z¯=x-iy
z¯+2z¯-1=x-iy+2x-iy-1=x+2-iyx-1-iy=x+2-iyx-1-iy×x-1+iyx-1+iy=x+2x-1+iyx+2-iyx-1-i2y2x-12-i2y2=x2+x-2+y2+iyx+2-x+1x-12+y2=x2+x-2+y2x-12+y2+i3yx-12+y2
Since, the real part of z¯+2z¯-1 is 4.
x2+x-2+y2x-12+y2=4x2+y2+x-2=4x-12+y2x2+y2+x-2=4x2+4y2-8x+43x2+3y2-9x+6=0x2+y2-3x+2=0x2-3x+y2=-2x2-3x+94+y2=-2+94x-322+y2=14
which represents a circle.
Hence, the locus of z is a circle.

Page No 91:

Question 10:

Show that the complex number z, satisfying the condition arg z-1z+1=π4 lies on a circle.

Answer:

Let z = x + iy.
Given: arg z-1z+1=π4
argz-1-argz+1=π4argx+iy-1-argx+iy+1=π4argx-1+iy-argx+1+iy=π4        .....1
Let the arguments of x-1+iy be θ1 and x+1+iy be θ2.
From (1), θ1-θ2=π4         .....2
tanθ1=yx-1 and tanθ2=yx+1
tanθ1-θ2=tanθ1-tanθ21+tanθ1tanθ2tanπ4=yx-1-yx+11+yx-1×yx+1       From 21=yx+1-yx-1x2-1+y21=yx+1-x+1x2+y2-11=2yx2+y2-1x2+y2-1=2yx2+y2-2y-1=0
which represents a circle.

Page No 91:

Question 11:

Solve the equation |z| = z + 1 + 2i.

Answer:

Given: z=z+1+2i
Let   z=x+iy
Squaring both sides, we get

z2=z+12+4i2+4z+1iz2=z2+1+2z-4+4z+1i0=-3+2z+4z+1i3-2z-4z+1i=0
3-2x+iy-4x+iy+1i=03-2x-2yi-4xi-4yi2-4i=03-2x+4y-2yi-4i-4xi=0(3-2x+4y)-i(2y+4x+4)=0
So,
3-2x+4y=02x-4y=3   .....1
And, 2y+4x+4=0y+2x+2=02x+y=-2   .....2
Solving (1) and (2), we get
y=-1 and x=-12
Hence, the value of z=x+iy=-12-i.



Page No 92:

Question 12:

If |z + 1| = z + 2(1 + i), then find z.

Answer:

Given: z+1=z+2(1+i)
Let z=x+iy
So, z+1=z+2(1+i)
x+iy+1=x+iy+21+ix+iy+1=x+iy+2+2ix+1+iy=x+2+2+yix+12+y2=x+2+i2+y     x+iy=x2+y2
Squaring on both sides, we get
x+12+y2=x+22+y+22×i2+2x+2y+2ix2+1+2x+y2=x2+4+4x-y2-4-4y+i2x+2y+2
Comparing the real and imaginary parts, we get
x2+1+2x+y2=x2+4x-y2-4y and 2(x+2)(y+2)=0

2y2-2x+4y+1=0             .....(1)
and (x+2)(y+2)=0             .....(2)
x+2=0 or y+2=0
x=-2 or y=-2
Now substituting x=-2 in (1), we get
2y2-2×(-2)+4y+1=02y2+4+4y+1=02y2+4y+5=0
b2-4ac=42-4×2×5=16-40=-24<0 
i.e. y has no real roots.
Now substituting y=-2 in (1), we get
2-22-2x+4-2+1=08-2x-8+1=0x=12
So, x=12 and y=-2.
Hence, z=x+iy=12-2i.

Page No 92:

Question 13:

If arg (z – 1) = arg (z + 3i), then find x – 1 : y, where z = x + iy.

Answer:

We have, arg (z – 1) = arg (z + 3i), where z = x + iy
⇒  arg (x + iy – 1) = arg (x + iy + 3i)
⇒ arg (x – 1 + iy) = arg [x + i(y + 3)]    .....(1)
Let the arguments of x-1+iy be θ1 and x+iy+3 be θ2.
From (1), θ1=θ2        .....2
tanθ1=tanθ2yx-1 =y+3xxy=x-1y+3xy=xy+3x-y-33x-3=yx-1y=13x-1 : y=1 : 3
Hence, (x – 1) : y = 1 : 3.

Page No 92:

Question 14:

Show that z-2z-3=2 represents a circle. Find its centre and radius.

Answer:

Let z = x + iy.
Given, z-2z-3=2.
x+iy-2x+iy-3=2x-2+iy=2x-3+iyx-22+y2=2x-32+y2x2-4x+4+y2=4x2-6x+9+y23x2+3y2-20x+32=0x2+y2-203x+323=0x2-203x+1032+y2=1032-323x-1032+y2=232
Hence, the centre of the circle is 103, 0 and radius is 23units.

Page No 92:

Question 15:

If z-1z+1is a purely imaginary number (z ≠ – 1), then find the value of |z|.

Answer:

Let z = x + iy.
z-1z+1=x+iy-1x+iy+1=x-1+iyx+1+iy=x-1+iyx+1+iy×x+1-iyx+1-iy=x2-1-iyx-1+iyx+1-i2y2x+12-iy2=x2-1+y2+iyx+1-x-1x+12+y2=x2-1+y2+2iyx+12+y2
Given that z-1z+1is a purely imaginary number.
x2-1+y2x+12+y2=0x2-1+y2=0x2+y2=1x2+y2=1z=1

Hence, the value of |z| is 1.

Page No 92:

Question 16:

z1 and z2 are two complex numbers such that |z1| = |z2| and arg (z1) + arg (z2) = π, then show that z1 = − z2.

Answer:

Let z1=z1cosθ1+isinθ1 and z2=z2cosθ2+isinθ2.
Given that |z1| = |z2|.
And, arg(z1) + arg(z2) = π
θ1+θ2=πθ1=π-θ2
z1=z1cosθ1+isinθ1=z2cosπ-θ2+isinπ-θ2=z2-cosθ2+isinθ2=-z2cosθ2-isinθ2=-z2¯
Hence proved.

Page No 92:

Question 17:

If |z1| = 1 (z1 ≠ –1) and z2=z1-1z1+1, then show that the real part of z2 is zero.

Answer:

Let z1 = x + iy
z1=x2+y2=1
z2=z1-1z1+1=x+iy-1x+iy+1=x-1+iyx+1+iy=x-1+iyx+1+iy×x+1-iyx+1-iy=x2-1-iyx-1+iyx+1-i2y2x+12-iy2=x2-1+y2+iyx+1-x-1x+12+y2=x2-1+y2+2iyx+12+y2=x2+y2-1+2iyx+12+y2=1-1+2iyx+12+y2     x2+y2=1=0+i2yx+12+y2
Hence, the real part of z2 is zero.

Page No 92:

Question 18:

If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg z1z4+argz2z3.

Answer:

Given that z1 and z2 are conjugate complex numbers.
z2=z1¯
Also, z3 and z4 are conjugate complex numbers.
z4=z3¯
Thus,
argz1z4+argz2z3= argz1z4z2z3= argz1z3¯z1¯z3= argz1z1¯z3z3¯= argz12z32= 0        z12z32 is purely real
Hence, arg z1z4+argz2z3 = 0.

Page No 92:

Question 19:

If |z1| = |z2| = ... = |zn| =1, then show that |z1 + z2 + z3 + ... + zn| = 1z1+1z2+1z3+ ... +1zn.

Answer:

We have,
|z1| = |z2| = ... = |zn| =1
⇒ |z1|2 = |z2|2 = ... = |zn|2 =1
z1z1¯=z2z2¯=...=znzn¯=1z1=1z1¯, z2=1z2¯, ..., zn=1zn¯
z1+z2+z3+...+zn=1z1¯+1z2¯+1z3¯+...+1zn¯=1z1+1z2+1z3+...+1zn¯=1z1+1z2+1z3+...+1zn

Hence proved.

Page No 92:

Question 20:

If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that |z1z2| = |z1| – |z2|

Answer:

Let z1z1cosθ1+ιsinθ1 and z2z2cosθ2+ιsinθ2 where arg(z1) = θ1 and arg(z2) = θ2.
Then, 
arg(z1) − arg(z2) = 0
⇒ θ1 − θ2 = 0
⇒ θ1θ2

Also,
z− z2 = z1cosθ1+ιsinθ1 − z2cosθ2+ιsinθ2
⇒ z− z2 = z1cosθ1-z2cosθ1+ιz1sinθ1-z2sinθ1     [θ1 = θ2]
                = z1cosθ1-z2cosθ12+z1sinθ1-z2sinθ12 
                = z12cos2θ1+z22cos2θ1-2z1z2cos2θ1+z12sin2θ1+z22sin2θ1-2z1z2sin2θ1
                = z12cos2θ1+sin2θ1+z22cos2θ1+sin2θ1-2z1z2cos2θ1+sin2θ1
                = z12+z22-2z1z2
                = z1-z22
                = z1-z2

Hence proved.
                
 

Page No 92:

Question 21:

Solve the system of equations Re (z2) = 0, |z| = 2.

Answer:

Let z=x+ιy. Then, z=x2+y2.
Now,
|z| = 2
x2+y2=2x2+y2=4      .....1
Also,
z2=x+ιy2=x2+iy2+2xiy=x2-y2+2ixy
And, 
Re (z2) = 0
x2-y2=0x2=y2             .....2  

Equating (1) and (2),
x2+x2=42x2=4x2=2x=±2

Similarly, y=±2.

So, z=±2±i2.
Hence, there are 4 solutions.
 

Page No 92:

Question 22:

Find the complex number satisfying the equation z+2 z+1+i=0.

Answer:

Let z=x+iy. Then,
z+2 z+1+i=0x+iy+2x+iy+1+i=0x+iy+1+2x+12+y2=0x+iy+1+2x2 +2x+1+y2=0
Comparing real and imaginary parts to 0 we get,
x+2x2+2x+1+y2=0      .....1y+1=0y=-1                                      .....2
Substituting (2) in (1) we get,
x+2x2+2x+1+1=02x2+2x+2=-x2x2+2x+2=x22x2+4x+4=x2x2+4x+4=0x+22=0x=-2

Hence, z=-2-i.

Page No 92:

Question 23:

Write the complex number z=1-icosπ3+i sinπ3 in polar form.

Answer:

z=1-ιcosπ3+ιsinπ3=212-ι2cosπ3+ιsinπ3=2cosπ4-isinπ4cosπ3+ιsinπ3=2cos-π4-π3+isin-π4-π3=2cos-7π12+isin-7π12=2cos5π12+isin5π12

Page No 92:

Question 24:

If z and w are two complex numbers such that |zw| = 1and arg (z) – arg (w) = π2, then show that z w=-i.

Answer:

Let z = (z) (cos θ1 + i sin θ1) and w = |w| (cos θ2 + i sin θ2)
Given, |zw| = |z| |w| = 1
Also, arg (z) – arg (w) = π2
θ1-θ2=π2

Now, z¯w=|z|(cosθ1-i sinθ1)|w|cosθ2+i sinθ2
              =|z||w|cos-θ1+i sin-θ1cosθ2+i sinθ2=1cosθ2-θ1+i sinθ2-θ1=cos-π2+i sin-π2

              =10-i=-i

Hence, proved.



Page No 93:

Question 25:

Fill in the blanks of the following

(i) For any two complex numbers z1, z2 and any real numbers a, b, az1-bz22+bz1+az22=..........

(ii) The value of -25×-9  is .....................

(iii) The number 1-i31-i3 is equal to ...............

(iv) The sum of the series i + i2 + i3 + ... upto 1000 terms is ..........

(v) Multiplicative inverse of 1 + i is ................

(vi) If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ...........

(vii) arg (z) + arg z z0 is ...............

(viii) If |z + 4| ≤ 3, then the greatest and least values of |z +1| are ............ and .............

(ix) If z-2z+2=π6, then the locus of z is ............

(x) If |z| = 4 and arg (z) = 5π6, then z = .............

Answer:

(i) |az1 – 6x2|2 + |bz1 + az2|2
= |az1|2 + |bz2|2 – 2 Re (az1 × bz¯2) + |bz1|2 + |az2|2 + 2 Re (bz1 × az¯2)
= (a2 + b2) |z1|2 + (a2 + b2) |z2|2
= (a2 + b2) ( |z1|2 + |z2|2)

(ii) -25×-9

=i25×i9i25×3=-15


(iii) 1-i31-i3

 =1-i31-i1+i+i2=1-i2i=1+i2-2ii=-2ii=-2

(iv) i + i2 + i3 + . . .  upto 1000 terms
= (i + i2 + i3 + i4) + (i5 + i6 + i7 + i8) + . . . 250 brackets
= 0 + 0 + 0 + . . . + 0         [∵ in + in+1 + in+2 + in+3 = 0 where n∊N]

(v) Multiplicative inverse of 1 + i
  =11+i=1-i1-i2=121i

(vi) Let z1 = x1 + iy1 and z2 = x2 + iy2z1 + z2 = (x1 + x2) + i (y1 + y2)
y1 + y2 = 0
y1 = – y2
since, z2 = x1iy1                [Assuming x1 = x2]
⇒ 2zz¯1

(vii) arg (z) + arg z¯ = θ + (– θ)
                                  = 0

(viii) Given that |z + 4| ≤ 3
For the greatest value of |z + 1|, |z + 1| = |z + 4 – 3| 
⇒ |z + 1| ≤ |z + 4| + |– 3|
⇒ |z + 1| ≤ 3 + 3
⇒ |z + 1| ≤ 6
So, greatest value of |z + 1| is 6. the least value of the modules of a complete number is zero. So, the least value of |z + 1| is zero.

(ix) z-2z+2=π6
 
x+iy-zx+iy+z=π6x-2+iyx+2+iy=π66|x-2+iy|=π|x+2+iy|
6x-22+y2=πx+22+y236x2+4-4×+y2=π2x2+4x+4+y236-π2x2+36-π2y2-144+4π2x+144+4π2=0

This is a circle.

(x) Let z = x + iy = (cosθ + sinθ) |z| = r = 4 and arg (z) = 0

Since, tanθ = 5π6

z=4cosπ6+i sinπ6

      =4cosπ-π6+i sinπ-π6=4cosπ-π6+i sinπ-π6=4-cosπ6+i sinπ6=4-32+i2=-23+2i

Page No 93:

Question 26:

State True or False for the following :

(i) The order relation is defined on the set of complex numbers.

(ii) Multiplication of a non zero complex number by – i rotates the point about origin through a right angle in the anti-clockwise direction.

(iii) For any complex number z the minimum value of |z| + |z −1| is 1.

(iv) The locus represented by |z −1| = |zi| is a line perpendicular to the join of (1, 0) and (0, 1).

(v) If z is a complex number such that z ≠ 0 and Re (z) = 0, then Im (z2) = 0.

(vi) The inequality |z − 4| < |z − 2| represents the region given by x > 3.

(vii) Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg (z1z2) = 0.

(viii) 2 is not a complex number.

Answer:

(i) False, we can compare two complex numbers when they are purely real, otherwise comparison of complex numbers is not possible.

(ii) False.
Let z = x + iy, where x, y > 0.
i.e., z or point A(x, y) lies in the first quadrant.
Now,
iz = – i (x + iy)
      = – ixizy
      = yix
Now, point B(y1x) lies in the fourth quadrant.
Also, ∠AOB = 90°
Thus, B is obtained by rotating A in clockwise direction about origin.

(iii) True,
|z1| + |z2| ≥ |z1z2|
⇒ |z| + |z – 1| ≥ |z – (z – 1)|
⇒ |z| + |z – 1| ≥ 1
So, minimum value of |z| + |z – 1| is 1.

(iv) True,
|z – 1| = |zi|
Putting z = x + iy, we get,
|x – 1 + xy| = |xi (1 – y)|
⇒ (x – 1)2 + y2 = x2 + (1 – y)2
x2 – 2x + 1 + y2 = x2 + 1 + y2 – 2y
⇒ –2x + 1 = 1 – 2y
⇒ –2x + 2y = 0
x – y = 0
Also, equation of a line long the points (1, 0) and (0, 1) is

y – 0 = 1-00-1 x-1

x + y = 1
So, this line is perpendicular to the line xy = 0

(v) False,
Let z = x + iy, z ≠ 0 and Re(z) = 0
⇒ x = 0
z = iy
⇒ Im (z2) = i2y2 = – y2 = – y2 ≠ 0

(vi) True,
|z – 4| < |z – 2|
Putting z = x + iy, we get
|x – 4 + iy| < x – 2 + iy|

x-42+y2<x-22+y2x-42+y2<x-22+y2x2-8x+16+y2<x2-9x+4+y2
⇒ – 8x + 16 < – 4x + 4
⇒ – 8x < – 4x – 12
⇒ 4x > 12
x > 3

(vii) False,
Let z1 = x1 + iy1 and z2 = x2 + iy2
Now,
|z1 + z2| = |z1| + |z2|
⇒ |x1 + iy1 + x2 + iy2| = |x1 + iy1| + |x2 + iy2|

 x1+x22+y1+y22=x12+y12+x22 +y22x1+x22+y1+y22=x21+y12+x22+y22+2x12+y12x22+y22x12+x22+2x1x2+y12+y22+2y1y2=x12+y12+x22+y22+2x12+y12x22+y22
2x1x2+2y1y2=2x12+y12x22+y22x1x2+y1y2=x12+y12x22+y22
x12x22+y12y22+2x1x2y1y2=x12x22+y12y22+x12y22+y12y22x1y2-x2y12=0x1y2=x2y1y1x1=y2x2y1x1-y2x2=0argz1-argz2=0

(viii) True,
2 is a real number and not a complex number.



Page No 94:

Question 27:

Match the statements of Column A and Column B.

Column A Column B
 (a) The polar form of i+3 is  (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0)
 (b) The amplitude of -1+3 is  (ii) On or outside the circle having centre at (0, – 4) and radius 3.
 (c) If |z + 2| = |z − 2|, then locus of z is  (iii) 2π3
 (d) If |z + 2i| = |z − 2i|, then locus of z is  (iv) Perpendicular bisector of segment joining (0, – 2) and (0, 2).
 (e) Region represented by |z + 4i| ≥ 3 is  (v) 2cosπ6+i sinπ6
 (f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having centre (– 4, 0) and radius 3 units.
 (g) Conjugate of 1+2i1-i lies in  (vii) First quadrant
 (h) Reciprocal of 1 – i lies in  (viii) Third quadrant

Answer:

Column A Column B
 (a) The polar form of i+3 is  (iii) 2π3
 (b) The amplitude of -1+3 is  (v) 2cosπ6+i sinπ6
 (c) If |z + 2| = |z − 2|, then locus of z is  (ii) On or outside the circle having centre at (0, – 4) and radius 3.
 (d) If |z + 2i| = |z − 2i|, then locus of z is  (iv) Perpendicular bisector of segment joining (0, – 2) and (0, 2).
 (e) Region represented by |z + 4i| ≥ 3 is  (i) Perpendicular bisector of segment joining (–2, 0) and (2, 0)
 (f) Region represented by |z + 4| ≤ 3 is  (vi) On or inside the circle having centre (– 4, 0) and radius 3 units.
 (g) Conjugate of 1+2i1-i lies in  (viii) First quadrant
 (h) Reciprocal of 1 – i lies in  (vii) Third quadrant

(i) z = i3

|z| = |i3 = 12+32

also, z lies in first quadrant.
argz=tan-113=π6
So, polar from of ≠ is 2 cosπ6+i sinπ6

(ii) z-1+-3=-1+i 3

Here, z lies in the second quadrant.

argz=π-tan-13-1
              =π-tan-13=π=π3=2π3

(iii) |z + 2| = |z – 2|
⇒ |x + 2 + iy| = |x – 2 + iy|
⇒ (x + 2)2 + y2 = (x – 2)2 + y2
x2 + 4x + 4 = x2 – 4x + 4
⇒ 8x = 0
x = 0
It is a straight line which is a perpendicular bisector of segment joining the points (–2, 0) and (2, 0)

(iv) |z + 2i| = |z – 2i|
putting z = x + iy, we get
|x + i(y + 2)|2 = |x + i(y – 2)|2
x2 + (y + 2)2 = x2 + (yz)2
⇒ 4y = 0
y = 0
It is a straight line which is a perpendicular bisector of segment joining (0, –2) and (0, 2).

(v) |z + 4i) ≥ 3
⇒ |x + iy + 4i| ≥ 3
⇒ |x + i (y + 3)| ≥ 3

⇒ x2+y+42 ≥ 3
⇒ x2 + y2 + 8y + 16 ≥ 9
x2 + y2 + 8y + 7 ≥ 0
This represents the region on or outside the circle having centre (0, –4) and radius 3.

(vi) |z + 4| ≤ 3
⇒ |x + iy + 4| ≤ 3
⇒ |x + 4 + iy| ≤ 3

⇒ x+42+y23
⇒ (x + 4)2 + y2 ≤ 9
x2 + 8x + 16 + y2 ≤ 9
x2 + 8x + y2 + 7 ≤ 0
This represents the region on or inside the circle having center (–4, 0) and radius 3.

(vii) z=1+2i1-i
          
          =1+2i1+i1+i1+2i=1+2i+i+2i21-i2=1-2+3i1+1=-12+3i2

Hence, z¯ lies in the third quadrant.

(viii) z = 1 – i

12=11-i

         =1+i1-i1+i=1+i1-i2=121+i
This, the reciprocal of z lies is the first quadrant.

Page No 94:

Question 28:

What is the conjugate of 2-i1-2i2?

Answer:

z=2-i1-2i2=2-i1+4i2-4i=2-i1-4-4i=2-i-3-4i

=2-i-3+4i=-2-i3-4i3+4i3-4i

  =6-8i-3i+4i29+16=--11i+225=-1252-11i=125-2+11i

z¯=125-2-11i=-225-1125i

Page No 94:

Question 29:

If |z1| = |z2|, is it necessary that z1 = z2?

Answer:

If |z1| = |z2| then z1 and z2 are at the same distance from origin. But, if arg(z1) ≠ arg(z2), then z1 and z2 are different.
So, if |z1| = |z2|, it is not necessary that z1 = z2.

Page No 94:

Question 30:

If a2+122a-i=x+iy, what is the value of x2 + y2?

Answer:

a2+122a-i=x+iy
a2+122a-i=x+iya2+122a2+-12=x2+y2x2+y2=a2+144a2+1



Page No 95:

Question 31:

Find z if |z| = 4 and arg z=5π6.

Answer:

Let z = |z| (cosθ + i sinθ), where θ = arg|–z|

Now, |z| = 4 and arg(z) = 5π6

z=4cos5π6+i sin5π6  z lies in II quadrant

      =4-32=i2=-23+2i

Page No 95:

Question 32:

Find 1+i2+i3+i

Answer:

1+iz+i3+i

=z+i+2i+i23+i=2+3i-13+i=1+3i3+i

=1+3i3-i3+i3-i=3+9i-i-3i29-i2

=3+8i+39+1=6+8i10=62100+82100=100100=1

Page No 95:

Question 33:

Find principal argument of 1+i32.

Answer:

Let z = a + ib
Then, the polar from of z is r(cosθ + i sinθ) where r = |z| = a2+b2 and tanθ = ba, and arg(z) = θ.
The principal argument is a unique value of θ such that -πθπ.
Now,
z=1+i32  =1-3+2i3  =-2+i23

tan α = 23-2            tan α = ImzRez            =-3            =3

tan α=tanπ3α=π3
 Rez<0 and Im z>0argz=π-π3             =2π3

Page No 95:

Question 34:

Where does z lie, if z-5iz+5i=1.

Answer:

If z1 = x1 + iy1 and z2 = x2 + iy2 then |z1| = x12+y12 and z2=x22+y22
Let z = x + iy

z-5iz+5i=x+iy-5ix+iy+5i
   
         
             =x+iy-5x+iy+5=x2+y-52x2+y-52
x2+y+52=x2+y-52      z-5iz+5i=1
⇒ –10y = 10y
⇒ 20y = 0
y =0 
So, z lies on real axis.

Page No 95:

Question 35:

Choose the correct answer from the given four options:
sin x + i cos 2x and cos xi sin 2x are conjugate to each other for:
(A) x =
(
B) x=n+12π2
(C) x = 0
(D) No value of x

Answer:


Let z = sinx + i cos2x

and z¯ = sinxi cos2x
Given,
z¯ =  cosxi sin2x
⇒ sinxi cos2x = cosxi sin2x
⇒ sinx = cosx and cos2x = sin2x
⇒ tanx = 1 and tan2x = 1

⇒ tanx tan π4 and tan2x = tan π4

x = nπ + π4 and 2x = nπ + π4

⇒ 2xx = 0
x = 0
Hence, the correct answer is option C.

Page No 95:

Question 36:

Choose the correct answer from the given four options:
The real value of α for which the expression 1-i sin α1+2i sin α is purely real is :
(A) n+1π2

(B) 2n+1π2

(C) nπ

(D) None of these, where n N

Answer:

z=1-i sinα1+2i sinα
   =1-i sinα1-2i sinα1+2i sinα1-2i sinα=1-i sinα-2i sinα + 2i2sin2α 1-4i2 sin2α=1-3i sinα-2sin2α1+4sin2α=1-2sin2α1+4sin2α-3i sinα1+4sin2α

It is given that z is purely real.

-3sinα1+4sin2α=0

⇒ –3sinα = 0
⇒ sinα = 0
⇒ α = nπ
Hence, the correct answer is option C.

Page No 95:

Question 37:

Choose the correct answer from the given four options:
If z = x + iy lies in the third quadrant, then zz also lies in the third quadrant if
(A) x > y > 0
(B) x < y < 0
(C) y < x < 0
(D) y > x > 0

Answer:

z¯2=x-iyx+iy=x-iy x-iyx+iy x-iy=x2-y2-2ixyx2+y2=x2-y2x2+y2-2ixyx2+y2

Since, z¯2 also lies in the third quadrant:

 x2-y2x2+y2<0 and -2xyx2+y2<0

x2y2 < 0  and –2xy < 0

x2 < y2  and xy > 0

So, x < y < 0.

Hence, the correct answer is option B.

Page No 95:

Question 38:

Choose the correct answer from the given four options:
The value of z+3 z+3 is equivalent to
(A) |2 + 3|2
(B) |z −3|
(C) z2 + 3
(D) None of these

Answer:

Let z = x + iy

z+3 z¯+3=x+iy+3 x+3-iy=x+32-iy2=x+32+y2=x+3+iy2=z+32

Hence, the correct answer is option A.

Page No 95:

Question 39:

Choose the correct answer from the given four options:
If 1+i1-ix=1, then
(A) x = 2n +1
(B) x = 4n
(C) x = 2n
(D) x = 4n + 1, where nN

Answer:

1+i1-ix=11+i 1+i1-i 1+ix=11+2i+i21-i2x=12i1+1x=1ix=1ix=i4n   i4n=1, nNx=4n

Hence, the correct answer is option B.



Page No 96:

Question 40:


Choose the correct answer from the given four options:
A real value of x satisfies the equation 3-4ix3+4ix=α-iβ α, β  R if α2+β2 =
(A) 1

(B) – 1

(C) 2

(D) – 2

Answer:

α-iβ=3-4ix 3-4ix3+4ix 3-4ix=9+16i2 x2-24ix9-16i2 x2=9-16x2-24ix9+16x2=9-16x29+16x2-i 24x9+16x2

α+iβ=9-16x29+16x2+i24x9+16x2So, α-iβ  α+iβ=9-16x29+16x22-i24x9+16x22

α2+β2=81+256x4-288x2+576x29+16x22=81+256x4+288x29+16x22=81+256x4+288x29+16x22=9+16x229+16x22=1

Hence, the correct answer is option A.

Page No 96:

Question 41:

Choose the correct answer from the given four options:
Which of the following is correct for any two complex numbers z1 and z2?
(A) |z1z2| = |z1| |z2|
(B) arg (z1z2) = arg (z1). arg (z2)
(C) |z1 + z2| = |z1| + |z2|
(D) |z1 + z2|  ≥ |z1| – |z2|

Answer:

Let z1 = r1 (cosθ + isinθ1) and z2 = r2 (cosθ2 + isinθ2) be two complex numbers.
⇒ |z1| = r1 and |z2| = r2
Then,
z1z2 = r1r2 [cosθ1 + cosθ2 + isinθ1 cosθ2 + icosθ1 sinθ2 + i2sinθ1 sinθ2 ]
= r1r2 [cos(θ1 + θ2) + isin(θ1 + θ2)]
⇒ |z1z2| = r1r2
⇒ |z1z2| = |z1| |z2|

Hence, the correct answer is option A.

Page No 96:

Question 42:

Choose the correct answer from the given four options:
The point represented by the complex number 2 – i is rotated about origin through an angle π2in the clockwise direction, the new position of point is:
(A) 1 + 2i
(B) –1 – 2i
(C) 2 + i
(D) –1 + 2i

Answer:

z < iα is a complex number, where modulus is r and argument (θ + α). If point P(2) rotates in clockwise sense through an angle α, its new position will be 2(θ  – iα)
Given that z = 2 – i.
It is rotated about origin through an angle π2 in the clockwise direction.
⇒ New position=ze-iπ2

2-ie-iπ2=2-i cos-π2+isin-π22-i 0-i=-2i-1=-1-2i

Hence, the correct answer is option B.

Page No 96:

Question 43:

Choose the correct answer from the given four options:
Let x, yR, then x + iy is a non real complex number if:
(A) x = 0
(B) y = 0
(C) x ≠ 0
(D) y ≠ 0

Answer:

Given x, y∈R
x + iy is non-real complex number if and only if g ≠ 0

Hence, the correct answer is option D.

Page No 96:

Question 44:

Choose the correct answer from the given four options:
If a + ib = c + id, then
(A) a2 + c2 = 0
(B) b2 + c2 = 0
(C) b2 + d2 = 0
(D) a2 + b2 = c2 + d2

Answer:

a + ib = c + id

⇒ |a + ib| = |c + id|            [if z1 = z2, |z1| = |z2|]

a2+b2=c2+d2

a2 + b2 = c2 + d2

Hence, the correct answer is option D.

Page No 96:

Question 45:

Choose the correct answer from the given four options:
The complex number z which satisfies the condition i+zi-z=1 lies on
(A) circle x2 + y2 = 1
(B) the x-axis
(C) the y-axis
(D) the line x + y = 1.

Answer:

Let z = x + iy

Then,

i+zi-z=1i+x+iyi-x-iy=1x+iy+1-x-iy-1=1x2+y+12x2+y-12=1

x2 + (y + 1)2 = x2 + (y – 1)2

x2 + y2 + 1 + 2y = x2 + y2 + 1 – 2y

⇒ 4y = 0

y = 0

so, z lies on the x-axis.

Hence, the correct answer is option B.

Page No 96:

Question 46:

Choose the correct answer from the given four options:
If z is a complex number, then
(A) |z2| > |z|2
(B) |z2| = |z|2
(C) |z2| < |z|2
(D) |z2| ≥ |z|2

Answer:

Let z be a complex number.
Then,
z = x + iy
⇒ |z| = |x + iy|
⇒ |z|2 = |x + iy|2
⇒ |z|2 = x + y2
and z2 = x2y2 + i2xy

z2=x2-y22+2xy2=x4+y4-2x2y2+4x2y2=x4+y4+2x2y2=x2+y22=x2+y2
⇒ |z|2 = |z|2

Hence, the correct answer is option B.

Page No 96:

Question 47:

Choose the correct answer from the given four options:
|z1 + z2| = |z1| + |z2| is possible if
(A) z2=z1

(B) z2=1z1

(C) arg (z1) = arg (z2)

(D) |z1| = |z2|

Answer:

z1+z2=z1+z2r1cosθ1+isinθ1+r2cosθ2+isinθ2=r1cosθ1+isinθ1+r2cosθ2+isinθ2r1cosθ1+r2cosθ2+ir1sinθ1+r2sinθ2=r1+r2r12 cos2θ1+r22cos2θ2+2r1r2 θ1 cosθ2+r12 sin2θ1+r22sin2θ2+2r1r2 sinθ1 sinθ2=r1+r2r12+r22+2r1r2 cosθ1-θ2=r1+r2r12+r22+2r1r2 cosθ1-θ2=r12+r22+2r1r22r1r21-cosθ1-θ2=0cosθ1-θ2=1cosθ1-θ2=cos 0°θ1-θ2=0θ1=θ2arg z1=arg z2

Hence, the correct answer is option C.



Page No 97:

Question 48:

Choose the correct answer from the given four options:
The real value of  θ for which the expression 1+i cos θ1-2i cos θ is a real number is:
(A) nπ+π4

(B) nπ+-1nπ4

(C) 2nπ±π2

(D) none of these.

Answer:

1+icosθ1-2icosθ=1+icosθ 1+2icosθ1-2icosθ 1+2icosθ=1+icosθ+2icosθ+2i2cos2θ1-4i2cos2θ=1+3icosθ-2icos2θ1+4cos2θ

For real value of θ,

3cosθ1+4cos2θ=03cosθ=0cosθ=cosπ2θ=2nπ±π2

Hence, the correct answer is option C.

Page No 97:

Question 49:

Choose the correct answer from the given four options:
The value of arg (x) when x < 0 is:
(A) 0
(B) π2
(C) π
(D) none of these

Answer:

Let z = x + 0i and x < 0

z=-12+02=1

Since, the point (x, 0) represents

z = x + 0i and lies on the negative side of real x-axis,

∴ Principal arg(z) = π.

Hence, the correct answer is option C.

Page No 97:

Question 50:

Choose the correct answer from the given four options:
If fz=7-z1-z2, where z = 1 + 2i, then |f (z)| is
(A) z2

(B) |z|

(C) 2|z|

(D) none of these.

Answer:

z = 1 + 2i

z=1+4=5
Now,

fz=7-z1-22=7-1-2i1-1+2i2=6-2i1-1-4i2-4i=6-2i4-4i=3-i2-2i=3-i 2+2i2-2i 2+2i=6-2i+6i-2i24-4i2=6+4i+24+4=8+4i8=1+i2

fz=1+14=52=z2

Hence, the correct answer is option A.



View NCERT Solutions for all chapters of Class 11