Math Ncert Exemplar 2019 Solutions for Class 11 Science Maths Chapter 3 Trigonometric Functions are provided here with simple step-by-step explanations. These solutions for Trigonometric Functions are extremely popular among class 11 Science students for Maths Trigonometric Functions Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Math Ncert Exemplar 2019 Book of class 11 Science Maths Chapter 3 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Math Ncert Exemplar 2019 Solutions. All Math Ncert Exemplar 2019 Solutions for class 11 Science Maths are prepared by experts and are 100% accurate.

Page No 52:

Question 1:

Prove that tan A+sec A-1tan A-sec A+1=1+sin Acos A

Answer:

To prove: tan A+sec A-1tan A-sec A+1=1+sin Acos A
LHS = tan A+sec A-1tan A-sec A+1
=tan A+sec A-sec2x-tan2xtan A-sec A+1
=tan A+sec A-secx+tanxsecx-tanxtan A-sec A+1=tan A+sec A1-secx+tanxtan A-sec A+1
=tanx+secx=sinxcosx+1cosx
=1+sinxcosx = RHS
Hence proved.

Page No 52:

Question 2:

If 2sin α1+cos α+sin α=y, then prove that 1-cos α+sin α1+sin α is also equal to y.

Answer:

Given: y=2sin α1+cos α+sin α
=2sinα1+cosα+sinα×1+sinα-cosα1+sinα-cosα=2sinα1+sinα-cosα1+sinα2-cos2α=2sinα1+sinα-cosα1+2sinα+sin2α-cos2α
=2sinα1+sinα-cosα2sinα+2sin2α=2sinα1+sinα-cosα2sinα1+sinα=1+sinα-cosα1+sinα
Hence proved.

Page No 52:

Question 3:

If m sin θ = n sin (θ + 2α), then prove that tan (θ + α) cot α=m+nm-n

Answer:

Given: m sin θ = n sin (θ + 2α)
mn=sinθ+2αsinθ
Applying componendo and dividendo,
m+nm-n=sinθ+2α+sinθsinθ+2α-sinθ                 =2sin2θ+2α2cos2α22cos2θ+2α2sin2α2                 =tanθ+αcotθ
tanθ+αcotθ=m+nm-n
Hence proved.

Page No 52:

Question 4:

If cosα+β=45 and sinα-β=513, where α lie between 0 and π4, find the value of tan 2α

Answer:

Given: cosα+β=45 and sinα-β=513
Therefore, sin(α+β)=35 and cos(α-β)=1213
Now, 2sinαcosβ=sin(α+β)+sin(α-β)=35+513=6465.....(1)
and 2cosαcosβ=cos(α+β)+cos(α-β)=45+1213=11265.....(2)
Dividing (1) by (2), we have tanα=646511265=47
So, tan2α=2tanα1-tan2α=2×471-1649=87×4933=5633.

 



Page No 53:

Question 5:

If tan x=ba, then find the value of a+ba-b+a-ba+b

Answer:

Given: tan x=ba
Applying componendo and devidendo, we get a+ba-b=1+tanx1-tanx and a-ba+b=1-tanx1+tanx
Therefore, a+ba-b+a-ba+b
=1+tanx1-tanx+1-tanx1+tanx=1+tanx+1-tanx1-tan2x=21-tan2x
=21-sin2xcos2x=2cosxcos2x-sin2x=2cosxcos2x
Hence, a+ba-b+a-ba+b =2cosxcos2x.

Page No 53:

Question 6:

Prove that cosθ cosθ2-cos 3θ cos9θ2=sin 7θ sin 8θ.

Answer:

To prove: cosθ cosθ2-cos 3θ cos9θ2=sin 7θ sin 8θ
LHS =cosθ cosθ2-cos 3θ cos9θ2
=122cosθ cosθ2-2cos 3θ cos9θ2=12cos3θ2+cosθ2-cos15θ2-cos3θ2
=12cosθ2-cos15θ2=122sin8θ2sin7θ2
=sin4θsin7θ2 = RHS.

Page No 53:

Question 7:

If a cos θ + b sin θ = m and a sin θb cos θ = n, then show that a2 + b2 = m2 + n2

Answer:

Given: a cos θ + b sin θ = m.....(1) 
and a sin θ – b cos θ = n.....(2)
Squaring and adding (1) and (2), we have
LHS = m2+n2
=acosθ+bsinθ2+asinθ-bcosθ2=a2cos2θ+b2sin2θ+2absinθcosθ+a2sin2θ+b2cos2θ-2absinθcosθ=a2cos2θ+b2sin2θ+a2sin2θ+b2cos2θ=a2sin2θ+cos2θ+b2sin2θ+cos2θ
=a2+b2 = RHS.

Page No 53:

Question 8:

Find the value of tan 22°30'.

Answer:

To find: tan 22°30' = tan2212°
Applying the formula tan2x=2tanx1-tan2x and putting x=2212°,
tan45°=tan22212°=2tan2212°1-tan22212°1=2tan2212°1-tan22212°
Let tan2212°=x
So, 1=2x1-x2
1-x2=2xx2+2x-1=0
x=-b±b2-4ac2a      =-2±4+42      =-1±2
Since the given angle is in the first quadrant so x=tan2212° must be positive.
Hence, x=tan2212°=2-1.

Page No 53:

Question 9:

Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A.

Answer:

To prove: sin 4A = 4sinA cos3A – 4 cosA sin3A
LHS = sin4A=sin(3A+A)
=sin3AcosA+cos3AsinA=(3sinA-4sin3A)cosA+(4cos3A-3cosA)sinA=3sinAcosA-4cosAsin3A+4sinAcos3A-3cosAsinA
=4sinAcos3A-4cosAsin3A = RHS

Page No 53:

Question 10:

If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2n2 = 4sinθ tanθ

Answer:

Given: tanθ + sinθ = m and tanθ – sinθ = n
LHS = m2-n2
=tanθ+sinθ2-tanθ-sinθ2=tan2θ+sin2θ+2tanθsinθ-tan2θ-sin2θ+2tanθsinθ
=4sinθtanθ = RHS

Page No 53:

Question 11:

If tan (A + B) = p, tan (A – B) = q, then show that tan 2 A = p+q1-pq

Answer:

Given: tan (A + B) = p and tan (AB) = q
LHS = tan2A=tan(A+B)+(A-B)
=tanA+B+tanA-B1-tan(A+B)tan(A-B)
=p+q1-pq = RHS

Page No 53:

Question 12:

If cosα + cosβ = 0 = sinα + sinβ, then prove that cos 2α + cos 2β = – 2cos (α + β).

Answer:

Given: cosα + cosβ = 0 = sinα + sinβ
Therefore, cosα+cosβ2-sinα+sinβ2=0
cos2α+cos2β+2cosαcosβ-sin2α-sin2β-2sinαsinβ=0cos2α-sin2α+cos2β-sin2β+2cosαcosβ-sinαsinβ=0cos2α+cos2β+2cosα+β=0cos2α+cos2β=-2cosα+β
Hence proved.

Page No 53:

Question 13:

If sin x+ysin x-y=a+ba-b, then show that tan xtan y=ab.

Answer:

Given: sin x+ysin x-y=a+ba-b
a+ba-b=sin x+ysin x-y
Applying componendo and dividendo,
a+b+a-ba+b-a-b=sinx+y+sinx-ysinx+y-sinx-y2a2b=2sinxcosy2cosxsinyab=tanxtanytanxtany=ab
Hence, proved.
 

Page No 53:

Question 14:

If tanθ=sinα-cosαsinα+cosα, then show that sinα+cosα=2 cosθ.

Answer:

Given: tanθ=sinα-cosαsinα+cosα
Dividing numerator and denominator on the right side by cosα
tanθ=sinα-cosαcosαsinα+cosαcosαtanθ=tanα-11+tanαtanθ=tanα-tanπ41+tanπ4tanαtanθ=tanα-π4
θ=α-π4cosθ=cosα-π4cosθ=cosαcosπ4+sinαsinπ4cosθ=cosπ4cosα+sinαcosθ=12cosα+sinα2cosθ=cosα+sinα
Hence proved.

Page No 53:

Question 15:

If sinθ + cosθ = 1, then find the general value of θ.

Answer:

Given: sinθ+cosθ=1
Dividing both sides by 12+12=2
12sinθ+12cosθ=12sinπ4sinθ+cosπ4cosθ=12cosθ-π4=cosπ4θ-π4=2nπ±π4, nZ
θ=2nπ±π4+π4, nZ θ=2nπ, 2nπ+π2,  nZ

Page No 53:

Question 16:

Find the most general value of θ satisfying the equation tanθ = –1 and cosθ=12.

Answer:

Given: tanθ = –1 and cosθ=12
Since cosθ is positive and tanθ is negative that means θ lies in 4th quadrant. Solving the two one by one:
tanθ=tan-π4tanθ=tan2π-π4tanθ=tan7π4 θ=nπ+7π4, nZ
Also, cosθ=12
cosθ=cos2π-π4cosθ=cos7π4 θ=2nπ±7π4, nZ
Clearly, the most general solution which is common in both of the above solutions is 2nπ+7π4, nZ.



Page No 54:

Question 17:

If cotθ + tanθ = 2 cosecθ, then find the general value of θ.

Answer:

Given: cotθ + tanθ = 2cosecθ
cosθsinθ+sinθcosθ=2sinθsin2θ+cos2θsinθcosθ=2sinθ1sinθcosθ=2sinθ2sinθcosθ=sinθ2sinθcosθ-sinθ=0sinθ2cosθ-1=0sonθ=0, cosθ=12
=nπ, cosθθ=cosπ3θ=nπ, 2nπ±π3, nZ

Page No 54:

Question 18:

If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.

Answer:

Given: 2sin2θ = 3cosθ
21-cos2θ=3cosθ2-2cos2θ=3cosθ2cos2θ+3cosθ-2=02cos2θ+4cosθ-cosθ-2=02cosθcosθ+2-1cosθ+2=02cosθ-1cosθ+2=0cosθ=12, -2
Since -1cosθ1 so -2 is invalid.
Therefore, cosθ=12cosθ=cosπ3, cos2π-π3
θ=π3, 5π3

Page No 54:

Question 19:

If secx cos5x + 1 = 0, where 0 < xπ2, then find the value of x.

Answer:

Given: secx cos5x+1=0, where 0<xπ2
cos5xcosx+1=0cos5x+cosx=0
2 cos3x cos2x=0    cosx+cosy=2 cos x+y2cosx-y2
Either cos3x=0 or cos2x=0
Either 3x=2n+1π2 or 2x=2n+1π2 x=π6, π2, π4

Page No 54:

Question 20:

If sin (θ + α) = a and sin (θ + β) = b, then prove that cos 2(αβ) – 4ab cos (αβ) = 1 – 2a2 – 2b2

Answer:

Given: sin (θ + α) = a and sin (θ + β) = b
Therefore, cosθ+α=1-a2 and cosθ+β=1-b2
cosα-β=cosθ+α-θ+β                  =cosθ+α cosθ+β + sinθ+α sinθ+β                  =1-a21-b2+ab
And cos2α-β=2cos2α-β-1
=21-a21-b2+ab2-1=21-a2-b2+a2b2+2ab1-a21-b2-1
Now, LHS = cos 2(α – β) – 4ab cos (α – β)
=2-2a2-2b2+2a2b2+4ab1-a21-b2-1-4ab1-a21-b2-4a2b2
=1-2a2-2b2 = RHS
Hence proved.

Page No 54:

Question 21:

If cos (θ + Ï•) = m cos (θÏ•), then prove that tan θ=1-m1+mcot ϕ.

Answer:

Given: cosθ+ϕ=mcosθ-ϕ
cosθ+ϕcosθ-ϕ=mcosθcosϕ-sinθsinϕcosθcosϕ+sinθsinϕ=m
Dividing numerator and denominator by cosθsinϕ on the left side,
cotϕ-tanθcotϕ+tanθ=mcotϕ+tanθcotϕ-tanθ=1m
Applying componendo and dividendo,
2cotϕ2tanθ=1+m1-mcotϕtanθ=1+m1-mtanθcotϕ=1-m1+mtanθ=1-m1+mcotϕ
​Hence proved.

Page No 54:

Question 22:

Find the value of the expression 3sin43π2-α+sin4 3π+α-2sin6π2+α+sin65π-α

Answer:

Given: 3sin43π2-α+sin4 3π+α-2sin6π2+α+sin65π-α
We know that sin3π2-α=-cosα, sin3π+α=-sinα, sinπ2+α=cosα and sin5π-α=sinα
Therefore, 3sin43π2-α+sin4 3π+α-2sin6π2+α+sin65π-α
=3cos4α+sin4α-2cos6α+sin6α=3cos2α2+sin2α2-2cos2α3+sin2α3=3cos2α+sin2α2-2cos2αsin2α-2cos2α+sin2αcos4α+sin4α-cos2αsin2α=31-2cos2αsin2α-21-3cos2αsin2α=3-6cos2αsin2α-2+6cos2αsin2α=1
Hence, the value of the expression is 1.

Page No 54:

Question 23:

If a cos 2θ + b sin 2θ = c has α and β as its roots, then prove that tan α + tan β = 2ba+c.

Answer:

Given: a cos 2θ + b sin 2θ = c
a1-tan2θ1+tan2θ+b2tanθ1+tan2θ=ca-atan2θ+2btanθ=c+ctan2θc+atan2θ-2btanθ+c-a=0
Since,  α and β are the roots of the given equation that means tanα and tanβ can satisfy this equation.
Now, sum of roots = -ba
tanα+tanβ=--2bc+a
tanα+tanβ=2bc+a.
Hence proved.

Page No 54:

Question 24:

If x = sec Ï• – tan Ï• and y = cosec Ï• + cot Ï• then show that xy + xy + 1 = 0

Answer:

Given: x=secϕ-tanϕ and y=cosecϕ+cotϕ
Therefore xy + x – y + 1
=secϕ-tanϕcosecϕ+cotϕ+secϕ-tanϕ-cosecϕ+cotϕ+1=1-sinϕcosϕ1+cosϕsinϕ+1-sinϕcosϕ-1+cosϕsinϕ+1=1+cosϕ-sinϕ-sinϕcosϕ+sinϕ-sin2ϕ-cosϕ-cos2ϕ+sinϕcosϕsinϕcosϕ=0sinϕcosϕ=0
Hence proved.

Page No 54:

Question 25:

If θ lies in the first quadrant and cosθ=817, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).

Answer:

Given: cosθ=817, where  θ lies in first quadrant.
Therefore, sinθ=1-cos2θ=1-64289=1517
Now, cos30°+θ+cos45°+θ+cos120°-θ
=cos30°cosθ-sin30°sinθ+cos45°cosθ+sin45°sinθ+cos120°cosθ+sin120°sinθ=32cosθ-12sinθ+12cosθ+12sinθ+-12cosθ+32sinθ=32+12-12817+-12+12+321517=11783+82-82+-15+152+1532=11783+82-8-15+152+1532=233+232-2334=23343+2-12
 

Page No 54:

Question 26:

Find the value of the expression cos4π8+cos43π8+cos45π8+cos47π8

Answer:

Given: cos4π8+cos43π8+cos45π8+cos47π8
=cos4π8+cos43π8+cos4π-3π8+cos4π-π8=cos4π8+cos43π8+cos43π8+cos4π8=2cos4π8+cos43π8=2cos4π8+sin4π2-3π8=2cos4π8+sin4π8
=2cos2π8+sin2π82-2sin2π8cos2π8=21-2sin2π8cos2π8=2-2sinπ8cosπ82=2-sinπ4=2-12=22-12=4-22



Page No 55:

Question 27:

Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0

Answer:

Given: 5cos2θ+7sin2θ-6=0
5(1-sin2θ)+7sin2θ-6=05-5sin2θ+7sin2θ-6=02sin2θ-1=0sinθ=±12
When sinθ=12=sinπ4
θ=nπ+-1nπ4
When sinθ=-12=sin-π4
θ=nπ--1nπ4
Hence θ=nπ±-1nπ4, nZ

Page No 55:

Question 28:

Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x

Answer:

Given: sinx-3sin2x+sin3x=cosx-3cos2x+cos3x
sinx+sin3x-3sin2x=cosx+cos3x-3cos2x2sin2xcosx-3sin2x=2cos2xcosx-3cos2xsin2x(2cosx-3)=cos2x(2cosx-3)(2cosx-3)(sin2x-cos2x)=0
Either 2cosx-3=0 cosx=32, which is not possible.
Or sin2x=cos2x 
tan2x=1 tan2x=tanπ4 2x=nπ+π4 x=nπ2+π8, nZ

Page No 55:

Question 29:

Find the general solution of the equation 3-1 cosθ+3+1 sinθ=2

Answer:

Given: 3-1 cosθ+3+1 sinθ=2 .....(1)
Let rsinx=3-1 then rcosx=3+1
r2=3-12+3+12r=22
And rsinxrcosx=3-13+1 
tanx=2-3=tanπ12 x=π12
Therefore (1) is, 
rsinxcosθ+cosxsinθ=2
22sinx+θ=2sinπ12+θ=12sinπ12+θ=sinπ4θ=nπ+(-1)nπ4-π12
Hence, θ=nπ+(-1)nπ4-π12nZ
 

Page No 55:

Question 30:

Choose the correct answer from the given four options:
If sin θ + cosec θ = 2, then sin2θ + cosec2θ is equal to
(A) 1
(B) 4
(C) 2
(D) None of these

Answer:

Given: sinθ+cosecθ=2
Squaring both sides,
sin2θ+cosec2θ+2sinθcosecθ=4sin2θ+cosec2θ=4-2=2
Hence, the correct answer is option C.

Page No 55:

Question 31:

Choose the correct answer from the given four options:
If f(x) = cos2x + sec2x, then
(A) f(x) < 1
(B) f(x) = 1
(C) 2 < f(x) < 1
(D) f(x) ≥ 2

Answer:

Given: f(x) = cos2 x + sec2 x
We have AM  GM
AM of cos2 x and sec2 x = cos2x+sec2x2
And GM of cos2 and sec2 x = cos2xsec2x
Therefore, cos2x+sec2x2  cos2xsec2x
cos2x+sec2x2  1
f(x)21f(x)2
Hence, the correct answer is option D.
 

Page No 55:

Question 32:

Choose the correct answer from the given four options:
If tan θ=12 and tan ϕ=13, then the value of θ + Ï• is
(A) π6

(B) π

(C) 0

(D) π4

Answer:

Given: tan θ=12 and tan ϕ=13
Therefore, tanθ+ϕ=tanθ+tanϕ1-tanθtanϕ
=12+131-12×13=5656=1=tanπ4
θ+ϕ=π4.
Hence, the correct answer is option D.
 

Page No 55:

Question 33:

Choose the correct answer from the given four options:
Which of the following is not correct?
(A) sin θ=-15

(B) cos θ = 1

(C) sec θ=12

(D) tan θ = 20

Answer:

Since the range of sinθ and cosθ is [-1, 1] and the range of tanθ is the set of real numbers R, therefore A, B and D are possible.
The range of Secθ is (-,-1][1,) therefore secθ=12 is not possible.
Hence, the correct answer is option C.

Page No 55:

Question 34:

Choose the correct answer from the given four options:
The value of tan 1° tan 2° tan 3° ... tan 89° is
(A) 0

(B) 1

(C) 12

(D) Not defined

Answer:

Given: tan1°·tan2°·tan3°·...·tan89°
=tan1°·tan2°·tan3°·...·tan45°·...·tan87°·tan88°·tan89°=(tan1°·tan89°)·(tan2°·tan88°)·(tan3°·tan87°)·...·tan45°={tan1°·tan(90°-1°)}·{tan2°·tan(90°-2°)}·{tan3°·tan(90°-3°)}·...·tan45°=(tan1°·cot1°)·(tan2°·cot2°)·(tan3°·cot3°)·...·tan45°=1·1·1·.....=1
Hence, the correct answer is option B.



Page No 56:

Question 35:

Choose the correct answer from the given four options:
The value of 1-tan2 15°1+tan2 15° is
(A) 1

(B) 3

(C) 32

(D) 2

Answer:

Since 1-tan2θ1+tan2θ=cos2θ
Therefore, 1-tan2 15°1+tan2 15°=cos2(15°)=cos30°=32.
Hence, the correct answer is option C.

Page No 56:

Question 36:

Choose the correct answer from the given four options:
The value of cos 1° cos 2° cos 3° ... cos 179° is
(A) 12

(B) 0

(C) 1

(D) –1

Answer:

Given: cos 1° cos 2° cos 3° ... cos 179°
= cos 1° cos 2° cos 3°...cos90°...cos177° cos178° cos179°         (cos90° = 0)
= 0.
Hence, the correct answer is option B.

Page No 56:

Question 37:

Choose the correct answer from the given four options:
If tan θ = 3 and θ lies in the third quadrant, then the value of sin θ is
(A) 110

(B) -110

(C) -310

(D) 310
 

Answer:

Given: tan θ = 3 and θ lies in the third quadrant.
Therefore, cotθ=13
cosec2θ-1=13cosec2θ-1=19cosec2θ=1+19=109cosecθ=±109=±103
sinθ=-310    π<θ<3π2.
Hence, the correct answer is option C.
 

Page No 56:

Question 38:

Choose the correct answer from the given four options:
The value of tan 75° – cot 75° is equal to
(A) 23
(B) 2+3
(C) 2-3
(D) 1

Answer:

Given: tan 75° – cot 75°
=sin75°cos75°-cos75°sin75°=2sin275°-cos275°2sin75°cos75°=-2cos150°sin150°=2×3212=23
Hence, the correct answer is option A.

Page No 56:

Question 39:

Choose the correct answer from the given four options:
Which of the following is correct?
(A) sin1° > sin 1
(B) sin 1° < sin 1
(C) sin 1° = sin 1
(D) sin 1°=π18° sin 1

Answer:

Since π rad = 180°
 1 rad =1803.14° = 57.3°
And sine is an increasing function therefore sin 1° < sin 1 is correct.
Hence, the correct answer is option B.

Page No 56:

Question 40:

Choose the correct answer from the given four options:
If tan α=mm+1, tan β=12m+1, then α + β is equal to
(A) π2

(B) π3

(C)  π6

(D) π4

Answer:

Given: tan α=mm+1, tan β=12m+1
 Therefore, tanα+β=tanα+tanβ1-tanα tanβ
                  =mm+1+12m+11-mm+1·12m+1                 =m(2m+1)+(m+1)(m+1)(2m+1)-m                 =2m2+2m+12m2+2m+1                 =1                 =tanπ4
α+β=π4
Hence, the correct answer is option D.

Page No 56:

Question 41:

Choose the correct answer from the given four options:
The minimum value of 3 cosx + 4 sinx + 8 is
(A) 5
(B) 9
(C) 7
(D) 3

Answer:

Given expression: 3 cosx + 4 sinx + 8
We know that -a2+b2asinθ+bcosθa2+b2
-32+423sinx+4cosx32+42
Thus, minimum value of 3sinx+4cosx=-32+42=-5
Therefore, the minimum value of 3 cosx + 4 sinx + 8 = -5 + 8 = 3
Hence, the correct answer is option D.

Page No 56:

Question 42:

Choose the correct answer from the given four options:
The value of tan 3A – tan 2A – tan A is equal to
(A) tan 3A tan 2A tan A
(B) – tan 3A tan 2A tan A
(C) tan A tan 2A – tan 2A tan 3A – tan 3A tan A
(D) None of these

Answer:

tan3A=tan(A+2A)=tanA+tan2A1-tanA tan2Atan3A-tanA tan2A tan3A=tanA+tan2Atan3A-tan2A-tanA=tanA tan2A tan3A
Hence, the correct answer is option A.



Page No 57:

Question 43:

Choose the correct answer from the given four options:
The value of sin (45° + θ) – cos (45° – θ) is
(A) 2 cosθ
(B) 2 sinθ
(C) 1
(D) 0

Answer:

Given expression: sin45°+θ-cos45°-θ
=sin45° cosθ + cos45° sinθ-cos45° cosθ-sin45° sinθ=12cosθ+12sinθ-12cosθ-12sinθ=12cosθ+sinθ-cosθ-sinθ=0
Hence, the correct answer is option D.

Page No 57:

Question 44:

Choose the correct answer from the given four options:
The value of cot π4+θ cot π4-θ is
(A) –1
(B) 0
(C) 1
(D) Not defined

Answer:

Given expression: cot π4+θ cot π4-θ
=cosπ4+θcosπ4-θsinπ4+θsinπ4-θ=cos2π4-sin2ysin2π4-sin2y=12-sin2y12-sin2y=1
Hence, the correct answer is option C.

Page No 57:

Question 45:

Choose the correct answer from the given four options:
cos 2θ cos 2Ï• + sin2 (θÏ•) – sin2 (θ + Ï•) is equal to
(A) sin 2(θ + Ï•)
(B) cos 2(θ + Ï•)
(C) sin 2(θÏ•)
(D) cos 2(θÏ•)

Answer:

Given expression: cos 2θ cos 2Ï• + sin2 (θ – Ï•) – sin2 (θ + Ï•)
Since sin2x-sin2y=sin(x+y) sin(x-y)
 sin2θ-ϕ-sin2θ+ϕ=sin2θ sin(-2ϕ)=-sin2θ sin2ϕ
Now, 
cos2θ cos2ϕ + sin2θ-ϕ-sin2θ+ϕ=cos2θ cos2ϕ - sin2θ sin2ϕ=cos2θ+ϕ
Hence, the correct answer is option B.
 

Page No 57:

Question 46:

Choose the correct answer from the given four options:
The value of cos 12° + cos 84° + cos 156° + cos 132° is
(A) 12

(B) 1

(C) -12

(D) 18

Answer:

Given expression: cos 12° + cos 84° + cos 156° + cos 132°
= (cos 12° + cos 132°) + (cos 84° + cos 156°)
= 2cos72° cos60° +2cos120° cos36° 
= cos72° - cos36° 
= cos (90° - 18° ) - cos36° 
= sin18°  - cos36° 
=5-14-5+14=-12
Hence, the correct answr is option C.

Page No 57:

Question 47:

Choose the correct answer from the given four options:
If tan A=12, tan B=13, then tan (2A + B) is equal to
(A) 1
(B) 2
(C) 3
(D) 4

Answer:

Given: tan A=12, tan B=13
tan2A=2tanA1-tan2A=2×121-14=43
Now, 
tan(2A+B)= tan2A+tanB1-tan2A tanB=43+131-43×13=53×95=3
Hence, the correct answer is option C.

Page No 57:

Question 48:

Choose the correct answer from the given four options:
The value of sin π10 sin 13π10 is
(A) 12

(B) -12

(C) -14

(D) 1

Answer:

Given: sin π10 sin 13π10
=sinπ10sinπ+3π10=-sinπ10sin3π10=-sin18°sin54°=-sin18°cos36°=-5-14×5+14=-542-142=-14
Hence, the correct answer is option C.

Page No 57:

Question 49:

Choose the correct answer from the given four options:
The value of sin 50° – sin 70° + sin 10° is equal to
(A) 1

(B) 0

(C) 12

(D) 2

Answer:

sin 50° – sin 70° + sin 10° = 2cos50°+70°2sin50°-70°2+sin10°            sinA-sinB=2cosA+B2sinA-B2
                                           = -2cos60°sin10°+sin10°
                                           = -212sin10°+sin10°
                                           = 0

Hence, the correct answer is option (B).

Page No 57:

Question 50:

Choose the correct answer from the given four options:
If sin θ + cos θ = 1, then the value of sin 2θ is equal to
(A) 1

(B) 12

(C) 0

(D) –1

Answer:

sin θ + cos θ = 1
⇒ (sin θ + cos θ)2 = (1)2                    [Squaring both sides]
⇒ sin2θ + cos2θ + 2sinθcosθ = 1      [(a + b)2 = a2 + b2 + 2ab]
⇒ 1 + 2sinθcosθ = 1                          (sin2θ + cos2θ = 1)
⇒ 2sinθcosθ = 0
⇒ 2sinθ = 0

Hence, the correct answer is option (C).



Page No 58:

Question 51:

Choose the correct answer from the given four options:
If α+β=π4, then the value of (1 + tan α) (1 + tan β) is
(A) 1
(B) 2
(C) – 2
(D) Not defined

Answer:

α+β=π4tanα+β=tanπ4tanα+tanβ1-tanαtanβ=1tanα+tanβ=1-tanαtanβtanα+tanβ+tanαtanβ=11+tanα+tanβ+tanαtanβ=1+1               Adding 1 on both sides11+tanα+tanβ1+tanα=21+tanα1+tanβ=2

Hence, the correct answer is option (B).

Page No 58:

Question 52:

Choose the correct answer from the given four options:
If sin θ=-45 and θ lies in third quadrant then the value of cos θ2 is
(A) 15

(B) -110

(C) -15

(D) 110

Answer:

cosθ=1-sin2θ=1--452=1-1625=925=±35

Now,
cosθ=2cos2θ2-1          π<θ<3π2π2<θ2<3π4-35=2cos2θ2-12cos2θ2=1-352cos2θ2=25cos2θ2=15cosθ2=±15cosθ2=-15           π2<θ2<3π4

Hence, the correct answer is option (C).

Page No 58:

Question 53:

Choose the correct answer from the given four options:
Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is
(A) 0
(B) 1
(C) 2
(D) 3

Answer:

tan x + sec x = 2 cos x
sinxcosx+1cosx=2cosx1+sinx==2cos2x2cos2x-sinx-1=021-sin2x-sinx-1=02-2sin2x-sinx-1=0-2sin2x-sinx+1=02sin2x+sinx-1=0

Since, the equation is a quadratic equation, the number of solutions will be 2.

Hence, the correct answer is option (C).

Page No 58:

Question 54:

Choose the correct answer from the given four options:
The value of sinπ18+sinπ9+sin2π9+sin5π18 is given by

(A) sin7π18+sin4π9

(B) 1

(C) cosπ6+cos3π7

(D) cosπ9+sinπ9

Answer:

sinπ18+sinπ9+sin2π9+sin5π18=sin5π18+sinπ18+sin2π9+sinπ9=2sin5π18+π182cos5π18-π182+2sinsin2π9+π92cossin2π9-π92=2sinπ6cosπ9+2sinπ6cosπ18=2×12cosπ9+2×12cosπ18=cosπ9+cosπ18=sinπ2-π9+sinπ2-π18=sin7π18+sin8π18=sin7π18+sin4π9

Hence, the correct answer is option (A).

Page No 58:

Question 55:

Choose the correct answer from the given four options:
If A lies in the second quadrant and 3tan A + 4 = 0, then the value of 2cot A – 5cos A + sin A is equal to
(A) -5310

(B) 2310

(C) 3710

(D) 710

Answer:

3tan A + 4 = 0                        
⇒ tan A = -43                                                      (A lies in second quadrant)
⇒ sin A = 45, cos A = -35 and cot A = -34        (Using Pythagoras theorem)
⇒ 2cot A – 5cos A + sin A = 2-34-5-35+45
                                           
                                           = -32+3+45
                                         
                                           = 2310

Hence, the correct answer is option (B). 

Page No 58:

Question 56:

Choose the correct answer from the given four options:
The value of cos2 48° – sin2 12° is
(A) 5+18

(B) 5-18

(C) 5+15

(D) 5+122

Answer:

cos2 48° – sin2 12° = cos(48° + 12°)cos(48° − 12°)      [cos2A – sin2A = cos(A + B)cos(A – B)]
                               = cos 60° × cos 36°
                               = 12×5+14
                               = 5+18

Hence, the correct answer is option (A).



Page No 59:

Question 57:

Choose the correct answer from the given four options:
If tan α=17, tan β=13, then cos 2α is equal to
(A) sin 2β
(B) sin 4β
(C) sin 3β
(D) cos 2β

Answer:

cos2α=1-tan2α1+tan2α=1-1721+172=1-1491+149=4850=2425

Also,
tan2β=2tanβ1-tan2β=2×131-19=2389=34
Now,
sin4β=2tan2β1+tan22β=2×341+342=2425

So, cos 2α = sin 4β.

Hence, the correct answer is option (B).
 

Page No 59:

Question 58:

Choose the correct answer from the given four options:
If tan θ=ab, then b cos 2θ + a sin 2θ is equal to
(A) a
(B) b
(C) ab
(D) None

Answer:

bcos2θ+asin 2θ=b1-tan2θ1+tan2θ+a2tanθ1+tan2θ=b1-a2b21+a2b2+a2ab1+a2b2=bb2-a2b2+a2+2a2bb2+a2b2=b3-a2bb2+a2+2a2bb2+a2=b3+a2bb2+a2=bb2+a2b2+a2=b

Hence, the correct answer is option (B).

Page No 59:

Question 59:

Choose the correct answer from the given four options:
If for real values of xcos θ=x+1x, then
(A) θ is an acute angle
(B) θ is right angle
(C) θ is an obtuse angle
(D) No value of θ is possible

Answer:

cosθ=x+1xcosθ=x2+1xx2+1-xcosθ=0

For real values of x, the value of discriminant i.e. b2 − 4ac ≥ 0.
-cosθ2-4×1×10cos2θ-40cos2θ4cosθ±2      -1cosθ1

So, the value of θ is not possible.

Hence, the correct answer is option (D).

Page No 59:

Question 60:

Fill in the blanks
The value of sin 50°sin 130° is _________.

Answer:

sin 50°sin 130°=sin 50°sin 180°-50°=sin 50°sin 50°=1

Page No 59:

Question 61:


Fill in the blanks
If k=sinπ18 sin 5π18 sin 7π18, then the numerical value of k is _______.

Answer:

k=sinπ18 sin 5π18 sin 7π18=sin10°sin50°sin70°=sin10°sin90°-40°sin90°-20°=sin10°cos40°cos20°=sin10°×122cos40°cos20°=sin10°×12cos40°+20°+cos40°-20°=12sin10°cos60°+cos20°=12sin10°12+cos20°=14sin10°+12sin10°cos20°=14sin10°+142sin10°cos20°=14sin10°+14sin10°+20°+sin10°-20°=14sin10°+14sin30°+sin-10°=14sin10°+14sin30°-14sin10°=14×12=18

Page No 59:

Question 62:

Fill in the blanks
If tan A=1-cos Bsin B, then tan 2A = __________.

Answer:

tan2A=2tanA1-tan2A=21-cosBsinB1-1-cosBsinB2=22sin2B22sinB2cosB21-2sin2B22sinB2cosB22=2sinB2cosB21-sinB2cosB22=2tanB21-tan2B2=tanB

Page No 59:

Question 63:

Fill in the blanks
If sin x + cos x = a, then
(i) sin6x + cos6x = _______
(ii) |sin x – cos x| = _______.

Answer:

sinx+cosx=asinx+cosx2=a2sin2x+cos2x+2sinxcosx=a21+2sinxcosx=a2sinxcosx=a2-12

(i) 
sin6x+cos6x=sin2x3+cos2x3=sin2x+cos2x3-3sin2xcos2xsin2x+cos2x=13-3a2-122×1=1-3a2-124=144-3a2-12

(ii)
sinx-cosx2=sin2x+cos2x-2sinxcosx=1-2a2-12=1-a2+1=2-a2
sinx-cosx=2-a2    (Since, |sin x – cos x| > 0)

Page No 59:

Question 64:

Fill in the blanks
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ________.

Answer:


A+B=90°      C=90°tanA+B=tan90°tanA+tanB1-tanAtanB=101-tanAtanB=0tanAtanB=1

Also,
tanA+tanB=sinAcosA+sinBcosB=sinAcosB+cosAsinBcosAcosB=sinA+BcosAcosB=sin90°cosAcos90°-A=1cosAsinA=2sin2A

The roots of the equation tan A and tan B. So,
x2-tanA+tanBx+tanAtanB=0x2-2sin2Ax+1=0

Page No 59:

Question 65:

Fill in the blanks
3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6x + cos6x) = _______.

Answer:

3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6x)=3sin2x+cos2x-2sinxcosx2+6sin2x+cos2x+2sinxcosx+4sin2x3+cos2x3=31-2sinxcosx2+61+2sinxcosx+4sin2x+cos2x3-3sin2xcos2xsin2x+cos2x=31+4sin2xcos2x-4sinxcosx+6+12sinxcosx+4-12sin2xcos2x=3+12sin2xcos2x-12sinxcosx+6+12sinxcosx+4-12sin2xcos2x=3+6+4=13

Page No 59:

Question 66:

Fill in the blanks
Given x > 0, the values of f(x) = – 3 cos 3+x+x2 lie in the interval _______.

Answer:

Let 3+x+x2 = y.
Then, 
f(x) = –3cos y
Now,
-1cosy13-3cosy-3-3-3cosy3-3-3cos3+x+x23, x>0

Hence, given x > 0, the values of f(x) = – 3 cos 3+x+x2 lie in the interval [−3, 3].
 



Page No 60:

Question 67:

Fill in the blanks
The maximum distance of a point on the graph of the function y=3 sin x + cos x from x-axis is _______.

Answer:

We have,
y=3 sin x + cos x 
=232sinx+12cosx=2cosπ6sinx+sinπ6cosx=2 sinx+π6
Thus, Maximum value of y=3 sin x + cos is 2. 

Page No 60:

Question 68:

State whether the following statement is True or False.
If tan A=1-cos Bsin B, then tan 2A = tan B

Answer:

Given that, tan A=1-cos βsin β
Now, taking LHS
tan 2A=2 tan A1-tan2β

=21-cosβsinβ1-1-cosβsinβ2=21-cosβsinβsin2β-1+cos2β-2cosβsin2β=21-cosβsinβsin2β-1+cos2β-2cosβ=21-cosβsinβsin2β-1+cos2β+2cosβ=21-cosβsinβ1-cos2β-1-cos2β+2cosβ=21-cosβsinβ2cosβ (1-cosβ)=tanβ=RHS

Thus, True.

Page No 60:

Question 69:

State whether the following statement is True or False.
The equality sin A + sin 2A + sin 3A = 3 holds for some real value of A.

Answer:

Given: sin A + sin 2A + sin 3A = 3.
Since, the maximum value of sin A is 1 but for sin2 A and sin 3A it is not equal to 1.
Thus, the given equation is False.

Page No 60:

Question 70:

State whether the following statement is True or False.
sin 10° is greater than cos 10°.

Answer:

Let sin 10° > cos 10°
⇒ sin 10° > cos(90° – 80°)
⇒ sin 10° > sin 80°
Which is wrong as for sin, value increase with θ.
Hence, False.

Page No 60:

Question 71:

State whether the following statement is True or False.
cos2π15cos4π15cos8π15cos16π15=116

Answer:

Taking LHS, we have
cos2π15 cos4π15 cos8π15 cos16π152 sin2π15 cos2π15·cos4π15·cos8π15·cos16π152·cos2π15sin4π15 cos4π15·cos8π15cos16π152 cos2π152 sin4π15 cos4π15 cos8π15·cos16π154 sin2π15.sin8π15 cos8π15cos16π154 sin2π152 sin8π15 cos8π15cos16π168 sin2π15 sin16π15cos16π158 sin2π15 2 sin16π15cos16π1516 sin2π15 sin2π+2π1516 sin2π15=116=RHS

Hence, Ture

Page No 60:

Question 72:

State whether the following statement is True or False.
One value of θ which satisfies the equation sin4θ – 2sin2θ – 1 lies between 0 and 2π.

Answer:

Given that, sin4 θ – 2sin2 θ – 1 
Now,
sin2θ=-(-2)±(-2)2-4×1×(-1)2×1=2 ± 222=1±2
sin2 θ=1+2 or 1-2.But, sin2θ1Since sin2θ=1+2 or 1-2.
Which is not possible.

Hence, about statement is False.
 

Page No 60:

Question 73:

State whether the following statement is True or False.
If cosec x = 1 + cot x then x = 2, 2 +π2

Answer:

Given that,
cosec x = 1 + cot x
1sinx=1+cosxsinx1sinx=sinx cosxsinxsinx+cosx=112sin+12cosx=12sinπ4sinx+cosπ4cosx=12cosx-π4=cosπ4x=2nπ+π4+π4=2nπ+π2                     ORx=2nπ+π4-π42nπ

Hence, True.

Page No 60:

Question 74:

State whether the following statement is True or False.
If tan θ + tan 2θ+3 tan θ tan 2θ=3, then θ=nπ3+π9

Answer:

Given that,
tan θ + tan 2θ+3 tan θ tan 2θ=3.
tan θ + tan 2θ+3 1-tan θ tan 2θ.tan θ + tan 2θ1-tan θ tan 2θ=3.tan 3θ +3=tanπ3.3θ=nπ+π3   nεZ.     θ=nπ3+π9

Hence, True.

Page No 60:

Question 75:

State whether the following statement is True or False.
If tan (π cos θ) = cot (π sin θ), then cos θ-π4=±122

Answer:

Given that,
tan (π cos θ) = cot (π sin θ),
πcosx=π2-πsinx.cosx+sinx=π212cosx+12sinx=122.cosx-π4=122

Hence, True.

Page No 60:

Question 76:

State whether the following statement is True or False.

In the following match each item given under the column C1 to its correct answer given under the column C2 :

(a) sin (x + y) sin (xy)   (i) cos2x – sin2y
(b) cos (x + y) cos (x y) (ii) 1-tan θ1+tan θ
(c) cot π4+θ (iii) 1+tan θ1-tan θ
(d) tan π4+θ (iv) sin2x – sin2y

Answer:

We have,
sin (x + y) sin (x – y) = sin2 x – sin2 y
cos (x + y) cos (– y) = cos2 x – sin2 y
cot π4+θ=cotπ4cot θ-1cot θ+cotπ4=cot θ-1cot θ+1=1-tan θ1+tan θ

tan π4+θ=tanπ4tan θ+1tan θ + tan=1+tanθ1-tanθ
Thus, a-(iv), b-(i), c-(ii), d-(iii)



View NCERT Solutions for all chapters of Class 11