Board Paper of Class 12Commerce 2004 Maths (SET 1)  Solutions
(i) The question paper consists of three sections A, B and C Section A is compulsory for all students. In addition to Section A, every student has to attempt either Section B OR Section C.
(ii) For Section A 
Question numbers 1 to 8 are of 3 marks each.
Question numbers 9 to 15 are of 4 marks each.
Question numbers 16 to 18 are of 6 marks each.<o:p></o:p></span></p>
(iii) For Section B/Section C
Question numbers 19 to 22 are of 3 marks each.
Question numbers 23 to 25 are of 4 marks each.
Question number 26 is of 6 marks.
(iv) All questions are compulsory.
(v) Internal choices have been provided in some questions. You have to attempt only one of the choices in such questions.
(vi) Use of calculator is not permitted. However, you may ask for logarithmic and statistical tables, if required.
 Question 1
If, show that
VIEW SOLUTION
 Question 2
Using properties of determinants, solve for x:
VIEW SOLUTION
 Question 3
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that
VIEW SOLUTION
(i) both the balls are red
(ii) one ball is red, the other is black
(iii) one ball is white
 Question 4
A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of X.
VIEW SOLUTION
 Question 5
Evaluate:
VIEW SOLUTION
 Question 6
Evaluate:
VIEW SOLUTION
 Question 7
Form the differential equation corresponding to where a andb are arbitrary constants.
VIEW SOLUTION
 Question 8
Solve the differential equation: given that y = 1, when x= 0.
OR
Solve the differential equation:
VIEW SOLUTION
 Question 9
Show that in a Boolean algebra, B:
VIEW SOLUTION
(i)
(ii)
Out of current syllabus
 Question 10
Evaluate:
VIEW SOLUTION
 Question 11
Differentiate w.r.t. x from first principles.
VIEW SOLUTION
 Question 12
Differentiate w.r.t. x.
VIEW SOLUTION
 Question 13
Find the equations of the tangent and the normal to the curve at.
VIEW SOLUTION
 Question 14
Evaluate:
VIEW SOLUTION
 Question 15
Evaluate:
VIEW SOLUTION
 Question 16
Using matrix method, solve the following system of linear equations:
VIEW SOLUTION
 Question 17
Show that a right circular cylinder, which is open at the top and has a given surface area, will have the greatest volume if its height is equal to the radius of its base.
VIEW SOLUTION
 Question 18
Using integration, find the area of the circle x^{2}+ y^{2}= 16, which is exterior to the parabola y^{2}=6x.
OR
Find the area of the smaller region bounded by the ellipse and the line.
VIEW SOLUTION

Board Paper of Class 12Commerce 2020 Math Delhi(Set 1)  Solutions

Board Paper of Class 12Commerce 2020 Math Delhi(Set 2)  Solutions

Board Paper of Class 12Commerce 2020 Math Delhi(Set 3)  Solutions

Board Paper of Class 12Commerce 2019 Math Delhi(Set 1)  Solutions

Board Paper of Class 12Commerce 2019 Math Delhi(Set 2)  Solutions

Board Paper of Class 12Commerce 2019 Math Delhi(Set 3)  Solutions

Board Paper of Class 12Commerce 2019 Math Abroad(Set 3)  Solutions

Board Paper of Class 12Commerce 2018 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2018 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2018 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2018 Maths  Solutions

Board Paper of Class 12Commerce 2018 Maths  Solutions

Board Paper of Class 12Commerce 2017 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2017 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2017 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2017 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2017 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2017 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2016 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2016 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2016 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2016 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2016 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2015 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2015 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2015 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2015 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2015 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2014 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2014 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2014 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2014 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2014 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2013 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2013 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2013 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2013 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2013 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2012 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2012 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2012 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2011 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2011 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2011 Maths (SET 3)  Solutions

Board Paper of Class 12Commerce 2010 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2010 Maths (SET 2)  Solutions

Board Paper of Class 12Commerce 2008 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2007 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2006 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2005 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2005 Maths (SET 1)  Solutions

Board Paper of Class 12Commerce 2004 Maths (SET 1)  Solutions