Board Paper of Class 12Humanities 2017 Maths (SET 2)  Solutions
General Instructions:
(i) All questions are compulsory.
(ii) This question paper contains 29 questions.
(iii) Questions 1 4 in Section A are very shortanswer type questions carrying 1 mark each.
(iv) Questions 512 in Section B are shortanswer type questions carrying 2 marks each.
(v) Questions 1323 in Section C are longanswer I type questions carrying 4 marks each.
(vi) Questions 2429 in Section D are longanswer II type questions carrying 6 marks each.
(i) All questions are compulsory.
(ii) This question paper contains 29 questions.
(iii) Questions 1 4 in Section A are very shortanswer type questions carrying 1 mark each.
(iv) Questions 512 in Section B are shortanswer type questions carrying 2 marks each.
(v) Questions 1323 in Section C are longanswer I type questions carrying 4 marks each.
(vi) Questions 2429 in Section D are longanswer II type questions carrying 6 marks each.
 Question
 Question 1
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of zaxis. VIEW SOLUTION
 Question
 Question 2
Evaluate : $\underset{2}{\overset{3}{\int}}{3}^{x}dx.$ VIEW SOLUTION
 Question
 Question 3
If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A^{–1}) = (det A)^{k}. VIEW SOLUTION
 Question
 Question 4
Determine the value of the constant 'k' so that function $\mathrm{f}\left(x\right)=\left\{\begin{array}{ll}\frac{kx}{\leftx\right},& \mathrm{if}x0\\ 3,& \mathrm{if}x\ge 0\end{array}\right.$ is continuous at x = 0. VIEW SOLUTION
 Question
 Question 5
Prove that if E and F are independent events, then the events E and F' are also independent. VIEW SOLUTION
 Question
 Question 6
A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is Rs 100 and that on a bracelet is Rs 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit?
It is being given that at least one of each must be produced. VIEW SOLUTION
 Question
 Question 7
Find $\int \frac{\mathrm{d}x}{{x}^{2}+4x+8}$ VIEW SOLUTION
 Question
 Question 8
Show that all the diagonal elements of a skew symmetric matrix are zero. VIEW SOLUTION
 Question
 Question 9
Find $\frac{dy}{dx}\mathrm{at}x=1,y=\frac{\pi}{4}\mathrm{if}{\mathrm{sin}}^{2}y+\mathrm{cos}xy=K$. VIEW SOLUTION
 Question
 Question 10
Show that the function $f\left(x\right)=4{x}^{3}18{x}^{2}+27x7$ is always increasing on $\mathrm{\mathbb{R}}$. VIEW SOLUTION
 Question
 Question 11
Find the vector equation of the line passing through the point A(1, 2, –1) and parallel to the line 5x – 25 = 14 – 7y = 35z. VIEW SOLUTION
 Question
 Question 12
For the curve y = 5x – 2x^{3}, if x increases at the rate of 2 units/sec, then fine the rate of change of the slope of the curve when x = 3. VIEW SOLUTION
 Question
 Question 13
Evaluate : $\underset{0}{\overset{\mathrm{\pi}}{\int}}\frac{x\mathrm{sin}x}{1+{\mathrm{cos}}^{2}x}\mathrm{d}x$
OR
Evaluate : $\underset{0}{\overset{3/2}{\int}}\leftx\mathrm{sin}\pi x\right\mathrm{d}x$ VIEW SOLUTION
 Question
 Question 14
Prove that x^{2} – y^{2} = c(x^{2} + y^{2})^{2} is the general solution of the differential equation (x^{3} – 3xy^{2})dx = (y^{3} – 3x^{2}y)dy, where C is parameter. VIEW SOLUTION
 Question
 Question 15
Let $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}},\text{\hspace{0.17em}}\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}$ and $\overrightarrow{\mathrm{c}}={\mathrm{c}}_{1}\hat{\mathrm{i}}+{\mathrm{c}}_{2}\hat{\mathrm{j}}+{\mathrm{c}}_{3}\hat{\mathrm{k}},$ then
(a) Let c_{1} = 1 and c_{2} = 2, find c_{3} which makes $\overrightarrow{\mathrm{a}},\text{\hspace{0.17em}}\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ coplanar.
(b) If c_{2} = –1 and c_{3} = 1, show that no value of c_{1} can make $\overrightarrow{\mathrm{a}},\text{\hspace{0.17em}}\overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ coplanar. VIEW SOLUTION
 Question
 Question 16
Often it is taken that a truthful person commands, more respect in the society. A man is known to speak the truth 4 out of 5 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.
Do you also agree that the value of truthfulness leads to more respect in the society? VIEW SOLUTION
 Question
 Question 17
Prove that $\mathrm{tan}\left\{\frac{\pi}{4}+\frac{1}{2}{\mathrm{cos}}^{1}\frac{a}{b}\right\}+\mathrm{tan}\left\{\frac{\pi}{4}\frac{1}{2}{\mathrm{cos}}^{1}\frac{a}{b}\right\}=\frac{2b}{a}$ VIEW SOLUTION
 Question
 Question 18
Using properties of determinants, prove that $\left\begin{array}{ccc}x& x+y& x+2y\\ x+2y& x& x+y\\ x+y& x+2y& x\end{array}\right=9{y}^{2}\left(x+y\right).$
OR
Let $A=\left(\begin{array}{cc}2& 1\\ 3& 4\end{array}\right),B=\left(\begin{array}{cc}5& 2\\ 7& 4\end{array}\right),C=\left(\begin{array}{cc}2& 5\\ 3& 8\end{array}\right)$, find a matrix D such that CD − AB = O. VIEW SOLUTION
 Question
 Question 19
Differentiate the function ${\left(\mathrm{sin}x\right)}^{x}+{\mathrm{sin}}^{1}\sqrt{x}$ with respect to x.
OR
If ${x}^{m}{y}^{n}={\left(x+y\right)}^{m+n}$, prove that $\frac{{d}^{2}y}{d{x}^{2}}=0$. VIEW SOLUTION
 Question
 Question 20
The random variable X can take only the values 0, 1, 2, 3. Given that P(2) = P(3) = p and P(0) = 2P(1). If $\mathrm{\Sigma}{p}_{\mathit{i}}{x}_{i}^{2}=2\mathrm{\Sigma}{p}_{\mathit{i}}{x}_{\mathit{i}}$, find the value of p. VIEW SOLUTION
 Question
 Question 21
Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1). VIEW SOLUTION
 Question
 Question 22
Solve the following L.P.P. graphically
Maximise Z = 4x + y Subject to following constraints x + y ≤ 50,3x + y ≤ 90,x ≥ 10x, y ≥ 0
 Question
 Question 23
Find: $\int \frac{2x}{\left({x}^{2}+1\right)\left({x}^{4}+4\right)}dx$ VIEW SOLUTION
 Question
 Question 24
Using integration, find the area of region bounded by the triangle whose vertices are (–2, 1), (0, 4) and (2, 3).
OR
Find the area bounded by the circle x^{2} + y^{2} = 16 and the line $\sqrt{3}\mathrm{y}=x$ in the first quadrant, using integration. VIEW SOLUTION
 Question
 Question 25
Solve the differential equation $x\frac{\mathrm{dy}}{\mathrm{d}x}+y=x\mathrm{cos}x+\mathrm{sin}x,$ given that y = 1 when $x=\frac{\mathrm{\pi}}{2}$ VIEW SOLUTION
 Question
 Question 26
Find the equation of the plane through the line of intersection of $\underset{r}{\to}\xb7\left(2\hat{i}3\hat{j}+4\hat{k}\right)=1$ and $\underset{r}{\to}\xb7\left(\hat{i}\hat{j}\right)+4=0$ and perpendicular to the plane $\underset{r}{\to}\xb7\left(2\hat{i}\hat{j}+\hat{k}\right)+8=0$. Hence find whether the plane thus obtained contains the line x − 1 = 2y − 4 = 3z − 12.
ORFind the vector and Cartesian equations of a line passing through (1, 2, –4) and perpendicular to the two lines $\frac{x8}{3}=\frac{\mathrm{y}+19}{16}=\frac{\mathrm{z}10}{7}$ and $\frac{x15}{3}=\frac{\mathrm{y}29}{8}=\frac{\mathrm{z}5}{5}$. VIEW SOLUTION
 Question
 Question 27
Consider f : R_{+} → [−5, ∞), given by f(x) = 9x^{2} + 6x − 5. Show that f is invertible with ${\mathrm{f}}^{1}\left(y\right)\left(\frac{\sqrt{y+6}1}{3}\right)$.
Hence Find
(i) f^{−1}(10)
(ii) y if ${\mathrm{f}}^{1}\left(y\right)=\frac{4}{3},$
where R_{+} is the set of all nonnegative real numbers.
OR
Discuss the commutativity and associativity of binary operation '*' defined on A = Q − {1} by the rule a * b = a − b + ab for all, a, b ∊ A. Also find the identity element of * in A and hence find the invertible elements of A. VIEW SOLUTION
 Question
 Question 28
A metal box with a square base and vertical sides is to contain 1024 cm^{3}. The material for the top and bottom costs Rs 5 per cm^{2} and the material for the sides costs Rs 2.50 per cm^{2}. Find the least cost of the box. VIEW SOLUTION
 Question
 Question 29
If $\mathrm{A}=\left(\begin{array}{crr}2& 3& 10\\ 4& 6& 5\\ 6& 9& 20\end{array}\right)$, find A^{–1}. Using A^{–1} solve the system of equations $\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=2;\frac{4}{x}\frac{6}{y}+\frac{5}{z}=5;\frac{6}{x}+\frac{9}{y}\frac{20}{z}=4$ VIEW SOLUTION
More Board Paper Solutions for Class 12 Humanities Math

Board Paper of Class 12Humanities 2019 Math Delhi(Set 1)  Solutions

Board Paper of Class 12Humanities 2019 Math Delhi(Set 2)  Solutions

Board Paper of Class 12Humanities 2019 Math Delhi(Set 3)  Solutions

Board Paper of Class 12Humanities 2019 Math Abroad(Set 3)  Solutions

Board Paper of Class 12Humanities 2018 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2018 Maths  Solutions

Board Paper of Class 12Humanities 2018 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2018 Maths  Solutions

Board Paper of Class 12Humanities 2018 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2017 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2017 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2017 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2017 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2017 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2016 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2016 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2016 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2016 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2016 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2015 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2015 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2015 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2015 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2015 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2014 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2014 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2014 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2014 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2014 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2013 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2013 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2013 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2013 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2013 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2012 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2012 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2012 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2011 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2011 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2011 Maths (SET 3)  Solutions

Board Paper of Class 12Humanities 2010 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2010 Maths (SET 2)  Solutions

Board Paper of Class 12Humanities 2008 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2007 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2006 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2005 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2005 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2004 Maths (SET 1)  Solutions

Board Paper of Class 12Humanities 2004 Maths (SET 1)  Solutions
Board Paper Solutions for Other Subjects