Let u be a constant vector and v be a vector of constant magnitude such that |v| = 1/2 |u| and |u| not equal to 0. Then the maximum possible angle between u and u + v is?

Dear Student,

Please find below the solution to the asked query:

Consider the vector v makes an angle θ with the negative side of vector u. So, the resultant component in x direction is,

u+vx=u-v cos θ u+vx= u-u2cos θu+vx= u22-cos θ

and the y component of the resultant vector is,

u+vy=v sin θ u+vy= u2sin θ

According to the parallelogram law of vector addition, the angle between the resultant with the first vector is,

tan α=u2 sin θu22+ cos θ= sin θ2+ cos θ

If α has to be maximum, when the dαdθ should be equals to zero. Therefore,
ddθtan α=ddθsin θ2+cos θ sec2α dαdθ=sin θ -sin θ -2+cos θcos θ2+cos θ2 - sin2θ - 2 cos θ - cos2θ = 0  2 cos θ = -1θ=2π3

Therefore, for the above value of θ, the angle between the resultant and vector u is maximum. Therefore, the maximum value of the angle α is,

tan α= sin θ2+ cos θ tan α= sin 2π32+ cos 2π3 tan α=322-12 tan α=13 α=tan-113 α=π6
 

Hope this information will clear your doubts about the topic.

If you have any more doubts just ask here on the forum and our experts will try to help you out as soon as possible.

Regards

  • 8
What are you looking for?