Call me

Have a Query? We will call you right away.

+91

E.g: 9876543210, 01112345678

We will give you a call shortly, Thank You

Office hours: 9:00 am to 9:00 pm IST (7 days a week)

What are you looking for?

Syllabus

how does the angle of dip vary from equator to poles?

What are the properties of

?Electric Lines of ForceWhat is Ohm's law in vector form.........???

derive an expression for the total work done in rotating an electric dipole through an angle theta in a uniform electric field.

Two capacitors C1 and C2 are charged to potential V1 and V2 resp. and then connected in parallel. Calculate common potential, charge on each capacitor and energy in the system after connection??

Find the expression for the capacitance of a parallel plate capacitor of area A and plate separation d if

i) a dielectric slab of thickness t, and

ii) a metllic slab of thicknes t

(where t<d) are introduced one by one between the platesof the capacitor. In which case would the capacitance be more and why?

An electic dipole of length 2cm is placed with its axis making an angle 60 degree with respect to a uniform electric field of 10

^{5}N/C. If it experiences a torque of 13.856 Nm, calculate the- magnitude of the charge on the dipole & PE of the dipole.Charge q is uniformly distributed over a thin half ring of radius R .The electric field at the centre of the ring is?WHAT ARE THE PROPERTIES OF EQUIPOTENTIAL SURFACES ?????????

A) in series. B) in parallel. C) in series parallel combination. D) none of the above

A parallel plate capacitor is charged by a battery. After sometime the battery is disconnected and a dielectric slab of dielectric constant K is inserted in between the plates. How would i) The capacitance ii) The electric field between the plates and iii) The energy stored in the capacitor be affected? Give reasons with necessary equations.

a body is rotating at a steady rate, does torque acts on the body?

_{1 },q_{2,}q_{3}are in line at equal distances q_{2 }and q_{3}are in sign .Find the magnitude and sign of q_{1 },if the net force on q_{3}is zero.ChargeQ is distributed over two concentric hollow spheres of radii R1 and R2 (R2>R1) such that the surface charge densities areequal. Find the electric potential at the common centre.

capacitance C2 is charged to a potential difference V2 The capacitors are now disconnected

from their respective charging batteries and connected in parallel to each other. (a) Find the

total energy stored in the two capacitors before they are connected.

(b) Find the total energy stored in the parallel combination of the two capacitors.

(c) Explain the reason for the difference of energy in parallel combination in comparison to

the total energy before they are connected.

An electric dipole is held in a uniform electric field.

a) Show that the net force acting on it is zero.

b) The dipole is aligned parallel to the field.Find the work done in rotating through angle of 180 degree

Q. The following graph shows the variation of charge Q with voltage V for two capacitors K and L. In

which capacitor is more electrostatic energy stored?

A spherical conducting shell of inner radius r1 and outer radius r2 has a charge Q. A charge q is placed at the centre of the cell.

(a) What is the surface charge density on the (i) inner surface (ii) outer surface of the shell.

(b) Write the expression for electric field at a point x r2 from the centre of the shell.

Q.L. Why is an insulator sometimes called a dielectric? What is the main difference between free and bound charge? Generally one of the two plates of a Capacitor System is earthed, why? Derive the expression for the energy stored in a charged capacitor.

Calculate the amount of work done in rotating a dipole, of dipole moment 3 x 10

^{-8}Cm, from its position of stable equilibrium to the position of unstable equilibrium of uniform electric field 10^{4}N/C..Q1.)CALCULATE THE WORK DONE TO DISSOSIATE THE SYSTEM OF THREE CHARGES PLACED ON THE VERTICES OF THE TRIANGLE ABC

HERE q=1.6 * 10

^{-10 }Call side of 10cm ,A=q ,B=2q,C=-4q

Draw 3 equipotential surfaces corresponding to a field that uniformly increases in magnitude but remains constant along z direction.

how are these surfaces different from that of a constant electric field along z direction?

Two point charges 4 micro coulomb & -2 micro coulomb are seperated by a distance of 1m in air. At what point of line joining the charges is the electric potential zero?

A small sphere of radius a carrying a positive charge q, is placed concentrically inside a larger hollow conducting shell of radius b (b a). This outer shell has charge Q on it . Show that if these spheres are connected by a conducting fire, charge will always flow from the inner sphere to the outer sphere, irrespective of the magnitude of the two charges.

(Why aren't induced charges, -q on the circumference of the inner sphere and Q+q on outer sphere considered since the spheres are conducting? If we consider them then Va= kq/a - kq/a + k(Q+q)/b and Vb= kq/b - kq/b + k(Q+q)/b. Thus, Va=Vb. Where is my mistake?)

two concentric metallic spherical shells of radii R and 2R are given charges Q1 and Q2 respectively .the surface charge densities on the outer surfaces of the shells are equal .determine the ratio Q1:Q2

Derive an expression for the energy stored in parallel plate capacitor with air as the medium between its plates . Air is now re placed by dielectric medium of dielectric constants k. How does it charges the total energy of the capacitor if

a ) the capacitor remains connected to the same battery .

b ) the capacitor is disconnected from the battery.

show that the electric field is always directed perpendicular to an equi-potential surface.

Three identical capacitors C

_{1}, C_{2}and C_{3}of capacitance 6 μF each are connected to a 12 V battery as shown.Find

(i) charge on each capacitor

(ii) equivalent capacitance of the network

(iii) energy stored in the network of capacitors

How much work is done in moving a 500 micro coulomb charge between two points on an equipotential surface?

Derivation of electric potential energy of a system of two point charges in the absence of external electric field

lenz law is consequence of the law of conservation of

charge,momentum, mass or energy

plz answer me xperts

In each of these metals is exposed to radiations of wavelength 300mm, which of them will not emit photo electrons and why?

OR

By how much would the stopping potential for a given photosensitive surface go up if the frequency of the incident radiations were to be increased from $4\times {10}^{15}Hzto8\times {10}^{15}Hz?\phantom{\rule{0ex}{0ex}}Givenh=6.4\times {10}^{-34}J-s,e=1.6\times {10}^{-19}Candc=3\times {10}^{8}m{s}^{-1}$

A 600 pF capacitor is charged by a 200V supply. It is then disconnected from the supply and is connected

to another uncharged 600 pF capacitor. How much electrostatic energy is lost in the process. ?

Plzz answr fast

Two capacitors, of capacitance 3 micro farad and 6 micro farad are charged to potentials of 2V and 5V respectively. These two charged capacitors are connected in parallel . Find the charge across each of the two capacitors now.

Q7. In the given figure three point charges are situated at the corners of an equilateral triangle of side 10 cm. Calculate the resultant force on the change at B. What is its direction?

explain the working of VAN DE GRAFF GENERATOR?

Name the physical quantity whose SI unit is Newton Coulomb

^{-1}.Define dielectric constant in term of capacitance

how do we show that the net potential is 0 for an electric dipole along an equitorial dipole?

A 4 micro farad capacitor charged by 200 volt supply. It is then dissconnected from the supply and is connected to anothe uncharged 2 micro farad capacitor. How much electrostatic energy of first capacitor is lost in the form of heat or e. m radiations?

two circular metal plates each of radius 10 cm are kept parallel to each other at a distance of 1 mm. what kind of capacitor do they make? mention one application of this capacitor. if the radius of each of the plates is increased by a factor of 2

^{1/2}and their distance of separation is decreased to half of its initialvalue, calculate the ratio of capacitance in the two cases.derivation for energy stored in a capacitor?

1) (q1 + q2 +...+qn)/2

2) (q1 + q2 +---+qn)/n

3) 0

4) none

a non conducting ring of radius 0.5 m carries a total charge of 1.11*10

^{-10}C distributed non uniformly on it's circumference producing electric field E vector everywhere in the space . the value of the line integral ∫ -E. dl ( llower limit =infinity , upper limit = 0) (=0 being at the centre of the ring ) in volts isshow that there is always a loss of energy when two capacitors charged to different potentials share charge

^{2}on yz plane ?the circuit is in series with a at one end and the capacitors connecetd in series

Urgent:

in charging a capacitor of capacitance C by a sorce of EMF V, energy supplied by the source is QV and energy stored in the capacitor is 1/2QV. Justify the difference?

why is electrostatic potential constant throughout the volume of the conductor and has the same value(as inside) on its surface??

Draw an equipotential surface in a uniform electric field...

Electric potential in an electric field is given by v=K/r ( K=const). If the posiion vector r = 2i + 3j + 6k, the electric field is given by

A) ( 2i + 3j + 6k) / 243

B) (2i + 3j + 6k) / 343

C) (3i + 2j + 6k) / 243

D) (6i + 2j + 6k) 343

Plz do all the proper.

A 10 micro faran capacitor is charged by a 30V dc supply & then connected across an uncharged capacitor of 50 micro faran. Calculate the(1) final potential difference across the combination & the (2)initial & final energies. How will you account for the difference in energies?

dielectric medium. (no links)withoutderivation of electric potential at a point on axial line of an electric dipole

An electric flux of -5 X 10

^{-3}Nm^{2}/C passes through a spherical Gaussian surface of radius 20 cm due to a charge placed at its centre.Calculate the charge enclosed by the Gaussian surface.

If the radius of the gaussian surface is doubled how much flux will pass through the surface?

i) positive ii) negative?

what is the electric flux

a) through curved surface area

b)through flat surface

Two electrons are moving towards each other,each with a velocity of 10

^{6}m/s.What will be losest distance of approach between them?an air capacitor is given a charge of 2μC raising its potential to 200V. If on introducing a dielectric medium, its potential falls to 50V, what is the dielectric constant of the medium?

2 identical parallel plate capacitors connected to a battery with the switch 's' closed . the switch 's' is now open and the free space between the plate of the capacitor is filled with a dielectric of k=3. Find the ratio of total energy stored in both capacitors before and after the introduction of the dielectric

draw schematically an equipotential surface of a uniform electrostatic field along x-axis.

answer soon pls

What is nature of symmetry of a dipole field?

(a) V' - V/V' +V

(b) V' - V/V

(c) V' - V/ V'

(d) V - V'/V'

when two capacitors are connected in series, the effective capacitance is 2.4 micro farad and when connected in parallel, the effective capacitance is 10 micro farad. calculate the individual capacitances.

Ans 2500V;1.1*10^-5C.

The half –life of a radioactive substance is 30 s. Calculate:(i ) the decay constant, and(ii) Time taken by the sample to decay 3/4 of its initial value.1) 12, 4

2) 8,8

3) 10,16

4) 12, 2